建阳区乳糖醇

微信扫一扫,分享到朋友圈

建阳区乳糖醇

建阳区乳糖醇
②新橙皮苷二氢查耳制的为异阿魏酸、m -羟苯基丙炔酸和m-羟苯基丙 烯酸。
注:本表系水滚液中的测定教据,括号内教振系蔗糖与二氬查耳《等甜度时的浓度比值.即二氮金卑 明的相对甜度。
用乙醉分子代替水分子时,会改变嗦吗甜的分子结构而使之丧失甜味。再添 加些水后会发现其甜味慢慢恢复,这是因为有机溶剂分子又重新换成原来的水分 子。这种甜味市新恢复的程度与乙醇浓度及溶液pH有关。例如,0% ~30%乙 醉液对嗦吗甜的甜味没有影响,但若高于30%,嗦吗甜的甜味就会迟延。在 40%乙醉溶液中甜味延迟lmin,在50%乙醇溶液中延迟3fnin,在60%乙醇中延 迟约lOmin。如果含乙醉的溶液呈酸性(pH = 1.7 ~3.0),即使是在低浓度的乙 醇液中,甜味延迟的时间更长。若将嗦吗甜乙醇溶液的pH提髙至3,扩藏前用 水稀释之,发现稀释液甜味恢复的比率明显增大,原来延迟lOmin的缩短至 6min,经30^:藏1周后发现又缩短至2.5min。这表明适宜的酸环境有利于阻 止溶剂对甜分子较好构象的干扰破坏。已知分子的形状及其溶剂的环境对可感觉 的甜味影响很大,因此从这些结果我们可以得知,像嗦吗甜这类大分子甜味剂还 附加一个时间效应。
本章讨论的各种天然糖苷,其甜度及植物来源汇总于表4 - 1。
化合物[102]是由氨基丙二酸二酯经稳定化处理制得的,即用电子等排的 /V-甲基-酰胺取代不稳定的甲酯。但这样一来甜度损失很大,于是不得不考虑 改用其他简单的基团来模拟酯基团的重要结构特征,最后选择了一些通过叩2轨 道中心的平面型基团(如三个取代基的3-C原子均在一个平面上)。依据这种 选择制备的D, L-呋喃基甘氨酸(+) 葑基酯[103](表2-53),这种 非对映体混合物的甜度要大大高于相应的/V-甲基-酰胺[102]。进一步研究 制得的苯基甘氨酸酯和其他杂环甘氨酸酯[104] ~ [106],它们的甜度也非常 大,特别是(-)或(+)-々-葑基酯化合物。苯基团和杂芳烃基团要 比通常的“上面”基团K,大,其中平面芳香烃基团在甜二肽结构上似乎起重要 的作用。例如,呋喃甘氨酸酯[103]经还原而得的四氢呋喃甘氨酸酯[107], 其甜度大为下降。
而两者间的复合强度决定了甜味刺激强度,即甜度。糖的AH、B系统为a-乙 二醇基团,部分典型甜味化合物中AH、B单元的分子识别如图丨-5所示。这 样,人类第一次拥有了一种简单的基础理论来解释各种甜味分子产生甜味的 原因。
宥人们去努力揭示它,因此,尽管奇异果素未能获准使用,但仍有不少科学T.作 者继续战斗在这个领域。
四、其他基因工程法生产莫奈林
⑤蔗糖C -4'位羟基的移去并不损害蔗糖的甜味,而增加C 位取代基的 大小和硫水性会使甜度显著增加。
三氧蔗糖分子内6 - 0H……- C1氢键的存在,通过不能形成这种氢键的 6-脱氧蔗糖(400倍)的甜度较三氣蔗糖(650倍)低的事实而得到证实。因 此,3、0H/2-0作为三氣蔗糖分子的AHS/BS对是合适的,其疏水部位X包括 r-CH2、l'-CI、4-(:丨以及6'-(:丨。由于疏水部位X可以从三氣蔗糖的果糖基 单元扩展到葡萄糖基上轴向的C-4位,因此C-4位羟基的氣化对三氣蔗糖的 高甜度同样具有重要意义。

展开阅读全文
本站部分文章来自网络,不代表立场及观点,转载请注明出处,如有侵权请联系即删除。 广告合作事宜,请联系:133 2802 0789(微信同号)

你也可能喜欢

评论已经被关闭。

插入图片
微信 微信
微信
电话 电话
13328020789
返回顶部