博爱县麦芽糖醇

微信扫一扫,分享到朋友圈

博爱县麦芽糖醇

博爱县麦芽糖醇
全基团保护法制备三氣蔗糖的工艺十分复杂,技术含萤很高,往往由于某一 步骤中某参数的偏差等细小因素就会导致整个反应过程的失败。
二、纽甜的物化性质表2-22汇总了纽甜的一些物化性质。纽甜具有纯正的甜味,良好的风味分 布和可接受性,甜度为阿斯巴甜的30?60倍,为蔗糖的6000?10000倍。在水 相中,其溶解度是达到10%蔗糖溶液同等甜度所要求溶解度的几百倍。在干燥 的条件下,纽甜具有较长的货架寿命;在中性pH范围或瞬时离温等条件下,纽 甜要比阿斯巴甜稳定得多,这些都大大扩展了纽甜可能的应用领域(如在焙烤 加工过程中)。它极低的使用蛩和十分有利的药物动力学性质,使它具有相当大 的安全系数。由于它制备的简单及惊人的髙甜度,可以预测纽甜的等甜度成本会 显著低于阿斯巴甜,具有很强的竞争力。表 2-22纽甜的主要物化性质
(二)酶反应过程的动力学模型该合成反应中,甜菊苷与蔗糖经FFase催化生成FSte和葡萄糖。该反应双底 物、双产物,并且同时有副反应发生,反应机制相当复杂。Chamber!等认为,蔗 糖和呋喃果聚糖的转果糖基反应,符合乒乓(BiBi)机制。Suzuki等认为,S和蔗 糖的转果糖基反应也符合相同的机制(图4-21),并对该反应建立了动力学模型。 该反应中,游离爾E和蔗糖Sue反应形成第一个复合物E ? Sue。然后G从E ? Sue 释放形成第2个复合物E ? Fru,该复合物与S反应形成第3个复合物E ? FSte,随 后FSte释放。在该系统除转果糖基作用外,还同时进行蔗糖水解和FSte水解反应。 这些水解反应若把水看作第二底物,则也符合乒乓(BiBi)机制,如图4-21 (2) 和(3)所示。根据研究认为FSte的合成不仅受到G的抑制,还受到F的抑制, 因此必须考虑G和F的竞争性抑制作用,并认为酶和副产物的复合物E ? Glu和 E* Fru呈惰性。FSte合成的总反应的理论机制如图4-22所示,A,?屺分别表示一 级反应的速率常数。图4-21各反应的乒乓(BiBi)机制示意图 (1) FSte合成反应 <2>蔗糖水解反哚 (3) FSte水解反应
注:?系从天然物中提取出的紫杉叶素(TaxIfoirO鼠乍糖作衍生物。
甜受体研究表明,化学感是由有序脂质传导,酸、咸、苦味受体均系脂质,甜 受体是蛋白质,苦受体可能也与蛋白质相连,它们均位于味细胞顶端的微绒
单基团保护法的核心在于蔗糖(:-6位羟基的保护,以避免该位置在随后的 氣化反应中引人氯原子带来苦味,该步骤也是以下各步反应的基础和影响终产物 得率的关键所在。这种选择性保护需要相当严格的反应条件,同时还需要有效的 分离设备,因此,蔗糖C-6位羟基的单基团保护,成为整个合成过程中对反应 条件和分离条件要求最严格的步骤。已知蔗糖具有醇的典型反应,其8个羟基的 相对活性顺序大体为V >6 >4 > r >2 >3 >3# >4',这些羟基的反应活性不仅受 空间排列的影响,也受反应性质、反应条件(温度、溶剂、时间、反应物浓度 等)、试剂性质与活化络合物稳定性等多方面的影响。尽管各羟基(尤其是同级 羟基)之间所处的位置及活性差异不大,但只要严格控制反应条件,仍然有可 能选择性地合成部分取代的蔗糖衍生物并使某种特定的产物处于优势地位。
仙茅蛋白和奇异果素都具有变味特性,因此对它们进行专门的比较。前面提 及仙茅蛋白的抗血淸只与奇异果素发生微弱的反应,另还发现仙茅蛋白不与奇异 果素的专一性抗血淸反应,这表明仙茅蛋白的抗原决定子与奇异果素的不同。仙 茅蛋白和奇异果素含有5个相同三肽,而在一般情况下,这种情况的出现几率是 非常低的,因此有可能其中某个相同三肽就是变味活性位点。
型代表。Suosan的甜度是蔗糖的700倍,带有明图6-28 Su_的化学结构图 显的苦味。这一系列的其他化合物,有的甜度比Suosan要大得多,甜味特性也 较好。例如,Suosan与阿斯巴甜的缩合物,其甜度竞是蔗糖的14000倍。

展开阅读全文
本站部分文章来自网络,不代表立场及观点,转载请注明出处,如有侵权请联系即删除。 广告合作事宜,请联系:133 2802 0789(微信同号)

你也可能喜欢

评论已经被关闭。

插入图片
微信 微信
微信
电话 电话
13328020789
返回顶部