天峻县低聚木糖

微信扫一扫,分享到朋友圈

天峻县低聚木糖

天峻县低聚木糖
而两者间的复合强度决定了甜味刺激强度,即甜度。糖的AH、B系统为a-乙 二醇基团,部分典型甜味化合物中AH、B单元的分子识别如图丨-5所示。这 样,人类第一次拥有了一种简单的基础理论来解释各种甜味分子产生甜味的 原因。
一般认为,在实用条件下,嗦吗甜的相对甜度为蔗糖的2000 ~ 2500倍,但 它的甜味特性与蔗糖有所不同。它到达最大甜度的时间较长,甜味持续时间也较 长,这是它与蔗糖在甜味特性方面的主要区别。嗦吗甜没冇糖精、甘草甜素、甜 菊苷一类强力甜味剂通常带有的不愉快苦后味、金属或化学后味,也没有新橙皮 苷二氢查耳醐所带有的类似薄荷醇的冷却口感。
(四)酵母嗦吗甜的分析
使用产物沉淀法,当L - PheOMe过贵时在水溶液反应也能有很髙的得率, 其中Z - L - Asp - L - PheOMe与L - PheOMe形成不溶性沉淀。各取底物 2?10mL水中混合,并加人10mg嗜热菌蛋ft酶,起始pH6~8,在 概保持3 ~5h可得到Z-L-Asp-L-PheOMe ? L - PheOMe白色沉淀,该沉淀 得率大于95%。研究还发现,以外消旋化合物为反应底物时,只有L-PheOMe 参与缩合反应得到产物为Z-L-Asp-L-PheOMe,但D - PheOMe也能与Z-L- Asp-L-PheOMe形成沉淀。根据这些研究结果,Tosoh公司开发了生产工艺流程 (图2-20),并在1984年完成了中试。
乙烯乙二醉(乙烷-1, 2-二醉)具有甜味而乙醇没有甜味,因此,醇基 团被认为是维持甜味分子的最低要求。对于碳水化合物來说,相邻碳原子上的一 对羟基(即一个乙二醇基团)被确认是AH、B单元,其中一个羟基作为AH, 而另一个羟基上的氧原子作为B (图丨-4)。甜受体结合位是以氢键与甜分子相 结合的,因为它含有与AH、B系统相反的结构基团,如酰胺(N—H)和羰基 (C=0)结构以及羟基氨基酸等。Suami认为,L -丝氨酸和L -苏氨酸单元均 可作为甜受体蛋白a-螺旋的端残基来充填该甜受体,在此NH2基作为AH, 0H上的氧原子作为B (图1-4)。需要指出的是,在碳水化合物结构中所有乙 二醉单元的任一羟基均可作AH或B单元(假如它们可互换的话),但并不是所 有的甜味化合物(包括氨基酸)都是这样的,这就解释了为何D-型和L-型氨 基酸的甜度不同,而D-糖和L-糖的甜度相同这一事实。
由于S-6-a的氣化反应是化学反应,专一性不强,因此S-6-a直接氣化 后的体系组成较为复杂,既有二氣代产物、三氣代产物,还有各种蔗糖碎片及蔗 搪分子内脱水的产物。此时无论是直接从体系中分离出TGS-6-a,还是先去酯 化后再分离出三氣蔗糖,其分离操作都将极为繁杂且效率低下,不利于提髙三氣 蔗糖的得率。目前有一种更好的分离操作方法是:将S-6-a直接氣化后的产物先 进行全酯化反应,然后再以三氣-五乙酰基蔗糖酯(TGSPA)的形式结晶出来。
阁1 -16两个假设的甜味受体活性位点的模助(以甜味化合物为模而间接推算的)
L -天冬氨酸若以嘴睡烷酮的形式与D -丙氨酰胺进行缩合,则在DMF ( 二 甲基甲酰胺)和I.-天冬氨酸的混合物中缓慢加入六氟丙酮,使悬浮在DMF中 的L-天冬氨酸完全溶解。六氟丙酮和水生成的水合物在真空条件下去除,得到 的油状物质溶解在THF (四氢呋喃)中,并缓慢加入D-丙氨酰胺在室温下反 应12h。在反应过程中,六氟丙酮在真空条件下会不断从反应液中流失,部分与 水结合的六氟丙酮水合物可以通过浓硫酸脱水后再除去。以这种方式得到的阿力
{二)马槟榔的基因表达
(二)天冬氨酸的改进

展开阅读全文
本站部分文章来自网络,不代表立场及观点,转载请注明出处,如有侵权请联系即删除。 广告合作事宜,请联系:133 2802 0789(微信同号)

你也可能喜欢

评论已经被关闭。

插入图片
微信 微信
微信
电话 电话
13328020789
返回顶部