临朐县二氢查耳酮

微信扫一扫,分享到朋友圈

临朐县二氢查耳酮

临朐县二氢查耳酮
选用三苯中基化和乙酰基化反应,来完全保护蔗糖的8个羟基。具体操作方 法是,在500mL圆底烧瓶中,依次加人20g蔗糖粉(0.058mol)和80mL 二甲基 屮酰胺,磁力搅拌并升温至50?65T使蔗糖完全溶解,再加入24g/V-甲基吗啉 (0.236mol)。分3次在3h内加人56. 8g三苯基氣甲烷(0. 197mol),恒温反应 3.0-4. 5h0
Birch及其同事通过对单糖和二糖进行化学改性,主要娃通过醚化、酯化或 取代一个至数个羟基团等方法,来探寻分子中包含在生甜团内的羟基,并命名为 X/AH/B系统。对于葡萄糖分子来说,首先可以排除最基本的6-羟基和1 -羟 基团,因为甲基-D-吡喃木糖苷具有甜味。4,6-0-甲基和甲基《-D-吡喃 葡萄糖苷衍生物不具有甜味,因而也排除了 2,3-乙二醉[邻位倾斜(偏转) 羟基],这样就只有3 -和4 -羟基才有可能构成AH和B单元。通过考察3 -羟 基取代的吡喃匍萄糖苷和木糖苷分子结构,可知3-羟基为B基团。蔗糖分子中 的某些羟基对甜味当然有作用,因此人们选用很多方法来掩盖、改变或替代蔗糖 分子中各个专一的羟基,利用生成的各种衍生物就能研究蔗糖甜味与结构的 关系。
几乎所有的二氢奄耳酮都是由相应的査耳酮催化还原而得,而杏耳SR则娃有 黄烷酮在碱作用下发生开环反应而得,图4 -26所示为其反应过程。
2.酶源对转糖苷产物的影响
很难说这是否是真正的第五个活性位点,或者这只是一个在不影响受体粮体 反应的情况下难以被扰动的临界区域。其他C族受体的数据表明,所有代谢型 受体的半胱氨酸贫集区域具有主要的结构作用。至于人体Ca2?受体,Hu等人发 现,hCaR的半胱氨酸富集区域在Venus flytrap结构域至hCaR的7TM的信号传 递和信息传递的序列特异性中起着关键作用。所有在这区域的突变都可能破坏甜 味受体的结构整体性。另一方面,楔形机制确实在无需提及这一另外结合部位的 情况下,为T1R3在与甜味蛋白相互作用中所起的关键作用提供了一个简明的 解释。
Hodge等人在大U形口袋区发现5种糖苷,即甘草甜素、柚背二氢査尔酮、 甜菊苷、新橙皮苷二氢查尔酮和Osladin等。它们含有多个AH、B单元,呈U 形三级结构,U字中部为疏水骨架,如图1-25所示。其抑制剂Gymnema具有 相同的骨架,但其上的6个一OH全被酯化,这表明甜受体也有与此互补的 穴位。甜分子中疏水侧链的长度与甜度有关,侧链的空间要求取决于其结合的 部位,故各甜味化合物的侧链长度限度也可作为研究受体的有利探针。应指 出的是最强刺激是针对脂膜的烃链C~9前段,故有刚性(:9疏水链的化合物 最甜。
甜菊苷同时还是很多食品加工的良好配料或加工助料,例如准备腌菜时可添 加烤制后粉碎的甜菊叶子。日本的一个典型用途就是用在调味乌贼鱼制品及其他 鱼制品上。
如图2-75所示,一种称为“后向旋转”(rHminvereo)的肽改性法,是将 酰胺结构中通常的羰基和含氮基团颠倒过來。在现有条件下,是连接于内二酸衍 生物上已被酰化的1,1 - 二氨基烷烃来代替通常的酰胺键连基团。D-丙氨酰胺 经后向旋转后得到的化合物,其甜度可增至900倍(表2-51)。2, 2, 5, 5- 四甲基环戊基化合物[94]的甜度很大,而2, 2, 4,4 -四甲基-丨hietane [96]的甜度要弱一些。1, 1 - 二氨基烷烃部分的R或S立体异构体[94]与 [95],它们的甜度相似,但是,经二甲基化后的化合物[97],其甜度只有 [94]的一半。对于小基闭(如平基)来说,只要立体化学上允许就可进行双取 代。这对于以低成本的外消旋丨,1-二氨基烷烃来制备这些甜味化合物,具有重 要的实际意义。很显然,甜受体在接受“上面”基团时具有一定的灵活性。
二、甘草甜素的安全毒理学分析
甘草除了含有三萜系列皂角外,还含有类黄酮(査耳酮)和甘草根亭 (Hquiritin)等成分。苦味物质包括甘草苦苷,主要存在于根茎的外部组织中, 剥去后即可除去。

展开阅读全文
本站部分文章来自网络,不代表立场及观点,转载请注明出处,如有侵权请联系即删除。 广告合作事宜,请联系:133 2802 0789(微信同号)

你也可能喜欢

评论已经被关闭。

插入图片
微信 微信
微信
电话 电话
13328020789
返回顶部