印台区安赛蜜

微信扫一扫,分享到朋友圈

印台区安赛蜜

印台区安赛蜜
系数表明,斥电子取代基会带来分子甜度的增加。这类取代基能增加酰胺氮原子 的氢键作用力,故可带来分子甜度的增加。前述的Fujino化合物具有很高的甜 度,这也可用方程式(2-32)来解释。在该类化合物中,两个酯基团的存在使 得o■?值增大,而2, 6-二甲基环己基和葑基酯上的甲基分支使得(%)2值增 大,W此增大了分子的甜度。
对Brazzein分子中的半胱氨酸、赖氨酸、酪氨酸、组氨酸和精氨酸的化学修 饰均导致甜味的降低或丧失。Brazzein的半胱氨酸具有极为重要的结构意义,它 们的还原和S烷基化将导致Brazzein 二级结构的解体和三级结构的破坏,从而使 甜味活性丧失。仔细分析除半胱氨酸外化学修饰硓示的其他重要活性相关残基, 可以推测分子中的2个区域可能是其活性中心的组成部分:一个区域以a螺旋和 卢折叠的链DI之间的转角为中心,包括分子中唯一的组氨酸HiS31以及残基 Arg33、Lys27和Lys30;另外一个区域以冷折香的链II和链DI之间的转角为中 心,包括残基Tyr39、Lys42和Arg43。在Brazzein的三维结构中,含Arg33的区 域接近残基Tyr54和Tyt51,因此,它与C端有着密切的关系。总的说来,这些 数据表明,C端是Brazzein甜味产生的必要因素。
许多甜菊苷生产流程均在后道的精制过程中使用f有机溶剂,诸如要去 除一些杂质可选用正丁醇及其醚或酯,有机氣化物或脂肪醇等。要使甜菊苷 结晶析出可选用甲醇或乙醇。结晶甜菊双糖苷A的较好溶剂为70%乙醉。 色谱分离可用多孔性凝胶或有机溶剂。要用色谱法分离出各种单一的双萜苷 可用烷基醇作溶剂。虽然色谱法精制分离效果很好,但还难于在商业化生产 中加以应用,在甜菊苷沉淀过程中,通常结合使用一些有机溶剂以去除色素 及一些杂质,最常见的沉淀剂是氢氣化钙。使用絮凝剂也可去除类似的 杂质。
注:_ R所栺麥見本幸第一节图4-丨;G表承薷苟蟾基,C?1表示半乳糖I,下
由表3-5可得,最佳反应条件为:三苯甲基化反应在551下进行4. 5h,乙 酰化反应在115T下进行3h。在该条件下进行反应,TR丨SPA得率可达67. 94%。 另外,在三苯甲基化反应中必须严格保持反应体系的无水状态及干燥,以免三苯 基氣甲烷发生水解。
(-)蔗糖8个羟基团的完全保护
图3 -34所示为在单糖专--性果糖转移酶合成S -6 - a过程中,底物和产物 浓度的变化。从图中可以看出,在反应初始阶段发酵生成S-6-a的起始速率和 时间成线性关系,随后逐渐失去线性关系,这可能是因为葡萄糖对酶的竞争性抑 制作用和底物浓度降低的缘故。在此期间,少数低聚糖副产物也会通过转果糖基 作用而形成。在反应后期,反应速率和S-6-a的降解速度及剩余蔗糖的浓度和 酶的活力有关。反成过程中,S-6-a的最高浓度可达到12%,得率约为58%, 随后S-6-a会慢慢水解,使果糖浓度逐渐上升。由此可见,5-6-3的得率是 处于动态发展中的,其最大得率依赖于果糖转移酶所引起的各种反应。
(5)色拉调味料。
图4-9中比较了以挤压膨胀淀粉、原淀粉、液化淀粉为葡糖基供体时,甜 菊苷的转葡糖基反应特性。挤压膨胀淀粉和液化淀粉的初始反应速率差别不大, 但挤压膨胀淀粉的转葡糖基反应上升更快,24h后得率达0.78,比液化淀粉 (0. 68)髙。原淀粉的转葡糖基反应很慢,这说明环糊精葡糖基转移酶不能有效 地进攻原淀粉的晶体结构。
本节主要介绍采用嗜热繭蛋酶催化合成阿斯巴甜前体的研究。(2)内肽酶(Endopeptidas) 可将W -苯甲酰-L -天冬氨酸-a -甲酯与 L -苯丙氨酸甲酯缩合生成带苯甲酰基的a - Asp - Phe0Meo(3)木瓜蛋白酶在乙酸乙酯溶液中将苄氧羰基-L-天冬氨酸与苯丙氨酸 中酯缩合生成带苄氧羰基的阿斯巴甜。木瓜蛋内酶甚至可用外消旋的D, L-苯 丙氨酸甲酯起反应,而只生成L-型产物。(4)嗜热脂肪芽孢杆菌(BaciUus stearothermophUwO的中性蛋白酶可将苄 氧羰基-L-天冬氨酸与苯丙氨酸甲酯盐酸化合物缩合生成带保护基的阿斯 巴甜。(5)金黄色葡萄球菌(^taPhylococc似aurcwO的蛋白酶可用不带保护基的 L -天冬氨酸-? -甲醋或a -酸氣与L -苯丙氨酸甲酯缩合生成阿斯巴甜。

展开阅读全文
本站部分文章来自网络,不代表立场及观点,转载请注明出处,如有侵权请联系即删除。 广告合作事宜,请联系:133 2802 0789(微信同号)

你也可能喜欢

评论已经被关闭。

插入图片
微信 微信
微信
电话 电话
13328020789
返回顶部