稻城县异麦芽酮糖

微信扫一扫,分享到朋友圈

稻城县异麦芽酮糖

稻城县异麦芽酮糖
{二)通过生物技术生产嗦吗甜
这些实验结果还可探讨莫奈林的甜味活性区域。重组SCM可像天然莫奈林那样 产生甜味反应。研究人员已通过生产规模装置,利用酵母菌株AB110对SCM进 行了大规模的生产和纯化。SCM基因是被克隆于携GAPDH或ADH2启动子的 pUC栽体的。把带有ADH2启动子的菌株S于450L中试规模的发酵罐进行发酵, 最终可获得54g具有甜味的纯化重组SCM。
早在100多年以前,人们就知道对位乙氧基苯脲具有甜味,甜度是蔗糖的200 倍。该化合物在美同曾一度允许使用,后由于发现有诱变性及毒性而被禁止俾用。
自然界中潜在的可作为高效甜味剂的天然糖苷除前述4类之外,本节对其余 6类略作介绍。这其中,甘茶甜素本身并不属于糖苷类化合物,但它在植物体内 是以糖苷形式存在,经酶水解糖苷而制得。除此之外,本节最后还顺便介绍一下 存在于天然植物体内的倍半萜烯化合物(HermmdulcifO,其甜度很髙,但不是 糖苻类物质。
单基团保护法合成三氣蔗糖,首要步骤是将蔗糖活泼的C-6位羟基进行单 独保护,然后再通过选择性氣化取代C-4、T,位上的羟基,最后脱去C-6 位上的保护基团生成终产物三氣蔗糖。如图3-28所示,除了各个步骤间必要的 分离操作,幣个制备过程主要包括以下3个步骤3①利用适当的保护基团,在合适的反应条件下,对蔗糖分子中的C-6位羟 基进行单基团保护。②选用适当的氣化试剂,选择性地氯化蔗糖C-4、\\ 上的羟基。图3 - 28单基团保护法合成三氣蔗糖的主要少骤③脱去C -6位上的保炉基团使其恢复为自由羟基,得到三氣蔗糖。
3.受体蛋白活化构象受体蛋白,由于其识别部位通过离子键和氢键的相互作用,形成紧密的收缩 构象(the contracted conformation),该状态称为 R 状态(the resting state),见图 1 -18n当甜味分子与受体蛋白相互作用后,两者形成分子间氢键,或者两者之间的 空间作用力,将可能导致受体蛋白识别部位之间部分离子键和氢键的断裂,从而 使受体蛋白紧密的收缩构象发生改变,形成更为开放的展开构象(the expanded conformation),称为受体蛋白的活化状态,见图1 - 19。某些强力甜味分子存在 高度结合部位如C02、CN、铵基或胍基,能够轻易破坏受体蛋白识別部位之间 的氢键,而且其分子上的环状刚性基团,像一个分子楔,合适地楔入识别部位 (即为空间楔入),也能使识别部位间的氢键断裂,因此具有强力甜味。
有些研究表明,糖精会阻碍牙斑微生物的生长。还有人研究表明,糖精钠可 以抑制牙斑微生物的生长。虽然它并没直接改变糖的代谢,但它提髙 了口腔的pH,因而对抑制龋齿有些帮助。
以AH、B、X甜味三角理论为指导,结合计算机模拟技术,在分子水平上 成功解释了三氣蔗糖的甜味构效关系。蔗糖分子存在两对AH/B双官能实体,即 1-to/2-O和3,-0H/2-0o ?=?氣蔗糖分子的AH/B对是Y-0H/2-0,疏水 部位 X 包括 r-CH2、r-Cl、4-Cl 以及 6f-Cl。
达到稳定状态。这一空穴组成了一个有別于可容纳小分子甜味剂的两个活性位点 的二级结合部位。这个用于解释甜味蛋白相互作用机理,称为“楔形”模型, 最初楚在对Brazzein、莫奈林和嗦吗甜与受体的同源模型进行对接计算的基础上 提出来的。
维持甜味分子的AH、B、X理论1963年,R. S. Shallenberge提出可根据糖分子内羟基间的氢键结合来对其甜 味进行最好的解释,之后他又提出了甜味的基本单元——AH、B系统,或称 AH、B识别位。在AH、B系统中,八和8是空间相距0.25~0.4(^*11、带相反 电荷的两个原子。A含有一个带正电的质子,可认为是酸,B为质子受体,可认 为是碱。一个甜味分子中的AH、B系统可和位于味莆蛋白受体上另一合适的 AH、B系统进行氢键结合,形成双氢键复合结构而产生甜味刺激(图1 -4),

展开阅读全文
本站部分文章来自网络,不代表立场及观点,转载请注明出处,如有侵权请联系即删除。 广告合作事宜,请联系:133 2802 0789(微信同号)

你也可能喜欢

评论已经被关闭。

插入图片
微信 微信
微信
电话 电话
13328020789
返回顶部