新华区二氢查耳酮

微信扫一扫,分享到朋友圈

新华区二氢查耳酮

新华区二氢查耳酮
天然提取的仙茅蛋白有甜味。lOjunoiyL仙茅蛋白的甜度与0.2moI/L蔗糖 相当,即其甜度是等量蔗糖的550倍。仙茅蛋白还具有将酸味变成甜味的特 性。在嘴里含仙茅蛋白3min,其甜味消失后,用柠檬酸或维生素C都能诱导 出强烈的甜味。lOpimol/L仙茅蛋白经0. 1?20.0mmol/L的柠檬酸诱导产生相 当于0.35mol/L蔗糖的甜度,甜味可以持续lOmin。它和奇异果素不同,其甜 味消失后,喝水也能产生甜味,如口含lOjxmoL/L仙茅蛋白后,由水产生的甜 度与0.2m?l/L蔗糖的甜度相当,甜味能持续约5min。这说明某些唾液中的物 质抑制了仙茅蛋白的甜味,去除这些物质后可使甜味冋复。NaCI溶液与水类 似,0.5nu>l/L的NaCI也能诱导甜味,而lnmiol/L的(:8(:12或MgCl2不能使仙茅 蛋白恢复甜味。由于唾液中含有lmm0L/LCa2+,因此有可能唾液中Ca2<和/或 Mg2+抑制了仙茅蛋白的甜味,而水可以去除唾液中的CaCl2,从而恢复了它的 甜味。 1979年12月,美国国家癌症研究所(NCI)的一份报告认为,通过对9000 人分析表明,人体较长时间(20年)摄人任何形式的糖精下会有增加癌症发病 率的可能,NC1发现那些摄入大萤糖精且食用时间又较长的人其癌症发病率并不 比非使用者髙。还有一份调查表明第二次世界大战期间丹麦人膀胱癌症发病率与 战前20年的没有差别,尽管战争期间人体的糖精摄取量较战前多4?5倍。通过 这些大萤的研究事实均可得出结论认为,没有证据表明糖精与癌症有关。 向左、右、上、下四个方向的距离参数为A ~fi4, s5为最大距离)D 应用其中31种化合物进行回归得出方程式: 五羟黄fW-3-乙酸觔 乙fit萆 H (2R, 3R) 图6 - 1糖楮、糖楮钠和糖梢钙的化学结构 总之,三肽化合物的甜度比大小相似的二肽化合物低。三肽分子之所以会损 失甜度,可能焙因为亲水性的增加以及构象的限制,使得其整体分子的形状与大 小均未处于最佳状态的缘故。Ariyoshi进一步研究了四肽和五肽化合物,在所研 究的14种四肽中有3种的甜度仅是蔗糖的0.5 ~5.0倍,7种五肽没有甜味(表 2-66)。这表明低聚肽的分子越大,接近甜受体就越困难。表2 -66 二-五肽化合物的结构与甜度 (2)只有用含甜蜜素高于丨%的饲料喂养大鼠,才出现体重下降现象。 在喂养小鼠时也发现相同的情况。以4g/kg的甜蜜素钠盐喂狗30(丨或以 1.5g/kg的甜蜜素钠盐与糖精钠以10: 1混合的混合料喂狗2年,没有发现狗 生长受抑制现象。以200mg/ (kg ? d)的甜蜜素钠盐喂雌糇5年以上,也没 影响其生长。 (五)可接受的每日摄入ft与预测的每日摄入量比较 其他还有许多国家和地诸如澳大利亚、加拿大、徳国、新西兰、西班 牙、比利时、墨西哥、以色列、西非、丹麦、瑞士以及其他一些欧洲国家均已批 准使用,可用于食品、饮料、医药品及化妆品上作甜味剂或风味增强剂。无疑, 嗦吗甜是一种很有发展前途的性质优良的天然食品添加剂。 3.受体蛋白活化构象受体蛋白,由于其识别部位通过离子键和氢键的相互作用,形成紧密的收缩 构象(the contracted conformation),该状态称为 R 状态(the resting state),见图 1 -18n当甜味分子与受体蛋白相互作用后,两者形成分子间氢键,或者两者之间的 空间作用力,将可能导致受体蛋白识别部位之间部分离子键和氢键的断裂,从而 使受体蛋白紧密的收缩构象发生改变,形成更为开放的展开构象(the expanded conformation),称为受体蛋白的活化状态,见图1 - 19。某些强力甜味分子存在 高度结合部位如C02、CN、铵基或胍基,能够轻易破坏受体蛋白识別部位之间 的氢键,而且其分子上的环状刚性基团,像一个分子楔,合适地楔入识别部位 (即为空间楔入),也能使识别部位间的氢键断裂,因此具有强力甜味。

展开阅读全文
本站部分文章来自网络,不代表立场及观点,转载请注明出处,如有侵权请联系即删除。 广告合作事宜,请联系:133 2802 0789(微信同号)

你也可能喜欢

评论已经被关闭。

插入图片
微信 微信
微信
电话 电话
13328020789
返回顶部