利辛县安赛蜜

微信扫一扫,分享到朋友圈

利辛县安赛蜜

利辛县安赛蜜
Goodman及其合作者应用C -端氨基酸构象强制法,详细研究了基团的大小 和疏水特性对化合物甜味的影响。碳原子上允许双取代,表2-64所示为双 取代基分别是甲基[157]、乙基[158]和环烷基(至环己基)[159]化合物 的甜度,与表2-63所示化合物甜度一样。随着C-端氨基酸大小和疏水性的增 加,并没有发现它对化合物甜味有任何大的影响。当环烷基碳原子数由6增至7 时,化合物突然由甜味转变成苦味,这说明甜味受体和苦味受体是紧密联系在一 起的。表2 -64 双取代基二肽化合物的结构与甜度
苯酐先与氨水和氢氧化钠进行酰胺化反应,之后在碱性条件下与次氣酸钠进 行霍夫曼降级反砬制得邻氨基苯甲酸,邻氨基苯甲酸与亚硝酸钠在酸性条件下进 行重氮反应,接着与二硫化钠进行罝换反应得到邻二硫二苯甲酸,邻二硫二苯甲 酸与甲醇酯化反应后再被液氣氯化,其后与苯酐法相同,进行胺化、酸析和中和 反应,生成糖精钠。 ?
CH, CH,
注广,从氨基洎开始计算。
CaMV, 35SRNA 的 Cauliflower Mosaic vims 启动子。
芦-D-呋果聚糠 苷-办-D-咲嚙塔格期<2200 x> (205 x>图3 - 57 C-4'取代基构象对三氣蔗糖衍生物甜度的影响
3.分子内氢键对甜味分子的作用尽管甜味产生的直接原因,来自甜味分子AH、B、X生甜团与甜味蛋内受 体的分子间氢键和疏水键合作用,但本章认为甜味分子中的分子内氢键,对甜味 化合物的甜度也有敢要的贡献,在甜味反应中扮演着协调幣体效果的角色。这种 贡献是间接产生的,通常是通过影响甜味分子疏水部位X与甜受体间的疏水键 合而表现出来。因为分子内氢键的形成往往导致甜味化合物在空间结构上的形 变,若这种形变使甜味分子的疏水基团X在空间位罝上向甜受体的疏水部位靠 拢,则有利于增强甜味分子与甜受体的疏水键合。
以紫苏亭为原料进一步衍生制得肟化物SRI Oxime V (图6 -27〉,甜度是蔗 糖的450倍,有很大的发展前途。相比于母体化合物,SKI Oxime V的水溶性得

展开阅读全文
本站部分文章来自网络,不代表立场及观点,转载请注明出处,如有侵权请联系即删除。 广告合作事宜,请联系:133 2802 0789(微信同号)

你也可能喜欢

评论已经被关闭。

插入图片
微信 微信
微信
电话 电话
13328020789
返回顶部