东河区糖精钠

微信扫一扫,分享到朋友圈

东河区糖精钠

东河区糖精钠
然而,纽甜的实际消耗量会比这些估计的数字要小。当今市场上除阿斯巴甜 外,还有甜蜜素、安塞蜜、糖精钠等其他甜味剂。而许多产品混合使用了两种或 更多的甜味剂,而不是单一的添加阿斯巴甜,因此,纽甜的实际消耗最将会少于 在阿斯巴甜消耗世的基础上所作的预测。
用来与甜菊苷混合的最常用物质是环状糊精。-环状糊精可专用来掩盖 提取物苦味,y-环状糊精可用来掩盖苦涩味,带盐环状糊楮可改善产品的整 体风味。此外,还可用来混合的物料包括葡聚糖、刺槐豆胶和组氨酸盐酸化合 物等。
(一)人体对甜蜜素的吸收与代谢
阿斯巴甜分子中的生甜闭尽管AH、B甜味理论能够很好地解释已知的所有甜味化合物的甜味特性, 但这种理论仍然遇到了诸多挑战:①虽然在甜味分子中都可以找到适当的AH、B体系,但许多拥有AH、B 体系的化合物并不甜。②AH、B理论可以解释甜味剂的甜味特性,却不能解释高效甜味剂的高效 甜味特性。1972年Kier在研究1 -烷氧基-2-氨基-4-硝基苯(图丨-7)时,引人 了另一分子特征即疏水(亲油)结合基团X,于是形成了甜味三角形理论 (AH、B、X理论)Q X距离AH的A约0.35nm,距离B约0.55nm。后来Hough 也认为除AH、B系统外,还应有一个亲油性或疏水性的第三连接点,这就承认 了 Kier的甜味三角形理论(图1-8)。Shallenberger本人也修改了他的理论,用 一个三角形概念来描述对映体的甜味(图丨-9)。丨-烷氧基-2-氨基-4-硝 基苯的高甜度可以解释为其1位基团的极化性,这个1位是“第三连接点X”, 它和硝基(B)、邻位的氢(AH)联合产生甜味。在D-氨基酸中,缬氨酸、亮 氨酸、色氨酸和苯丙氨酸都具有比较强的甜味,这是由于它们都含有疏水基的缘 故。因为甜味分子的琉水性基能与甜受体膜的疏水性部位相结合,使甜味分子易于 被甜受体膜所吸附。可以认为,亲油-亲水平衡是决定一种分子甜度的重要因素。
对阿斯巴甜及阿斯巴甜盐酸化物的晶体结构作了分析,沿着肽主链的键几乎 都是反式的。根据Goodman等人上述的观点,阿斯巴甜旁链优先存在的构象是 F.D,,而阿斯巴甜盐酸盐优先存在的构象是FBDI。在天冬氨酰羧基 和胺基呈反式存在,因此不是活性构象。相反,Gorbhz认为FuDi是活性构象, 因为它最符合Kier的甜味三角形模式。然而,Kier的三角形模式是根据硝基苯 胺而不是二肽确立的。Heijden等人认为二肽的甜味三角形要比硝基苯胺的大, 因此FnDB构象最符合。另一密切相关的化合物是阿斯巴甜的LiBr复合物,结晶 状态以F,D■为优先构象,所以在固体状态下,阿斯巴甜及其HC1盐、UBr盐的 优先存在构象均不一样。
3%安赛密饲料喂养白鼠进行致癌性试验。此 外还用它喂养狗2年进行安赛蜜的慢性莓理 试验。所有这些试验结果均表明安赛蜜是安 全无毒的。
图3-15三苯基化与乙酰基化的反应式
6'-氣蔗糖的甜度是蔗糖的20倍。室温下在嘧啶中用三苯中基氣有选择地 在蔗糖的6'-位三苯甲基化,然后用乙酸酐对其乙酰化,在冰醋酸中用溴化氢 进行脱三苯甲基作用。在嘧啶中用磺酰氯氣化得到蔗糖7-醋酸盐,在甲醉中用 甲醇钠除去醋酸基团,得到6'-氯蓆糖。
在d-丙氨酸酰胺和后向旋转酰胺中的酰胺基团,属于甜二肽结构m中较大 的1^2基团,但它也可占据小基团R,的位罝。表2-52列出的[99] ~ [102] 是D,L-氨基丙二酸酰胺酯。[99] - [101]带有分支的环状酯基团,具有很 强的甜度,而与之相关的单甲基酰胺[102]的甜度却要低搿多。甜度降低的原 因是由于(+) -?葑醇异构体的存在或酰胺氢的不利影响。相比之下,用酰 胺、甲基酰胺或二甲基酰胺取代阿斯巴甜中的甲酯,会导致甜味丧失。
表4-18 二氬査耳酮与蔗糖的甜度对比

展开阅读全文
本站部分文章来自网络,不代表立场及观点,转载请注明出处,如有侵权请联系即删除。 广告合作事宜,请联系:133 2802 0789(微信同号)

你也可能喜欢

评论已经被关闭。

插入图片
微信 微信
微信
电话 电话
13328020789
返回顶部