容县木糖

微信扫一扫,分享到朋友圈

容县木糖

容县木糖
蔗糖酯化后甜度均戏剧性地下降,它的6 -单取代乙酸酯只有微弱的甜味, 6-0-苯甲酸和6-磷酸酯均没有甜味,6,6#-二酯和r, 6'-二酯也没有任 何甜味,而辛-乙酸酯更是众所周知的苦味剂和变性剂,所以,C-6、c-r和 C-6'上基团的大小,特别是C-6上基闭对分子甜味起者很重要的作用。这些 基团的大小一旦发生任何明显的增大,均会导致整个分子的变大,使得不能与味 蕾甜受体正常配合。6-脱氧和6-0-甲基蔗糖均有甜味,这是因为C-6上基 团较小。而具有较大基团的6-0-苯甲酰酯衍生物就没有甜味,这些事实支持 了上述论点。像4-脱氧衍生物、4-0-甲基蔗糖一样,1'-脱氧和广-甲基酯 也有甜度。这些结果均与蔗糖甜味三角形基团是C-4 (X)、C-2 (B)和 C-31 (AH)的结论一致(图3 - 40)。当蔗糖分子的3'-羟基被酯化成 1-0-乙酰蔗糖时,由于掩盖了生甜团的AH基团,因此,生成物不具有甜味, 这也确证了上述结论。
(3)通过/V-(3, 3-二甲基丁基)-L-a-天冬氨酸-/3-酴酸肝和L-苯 内氨酸甲酯缩合来制备。N-(3, 3-二甲基丁基)-L-a-天冬氨酸-芦-酯酸 酐可以通过在P205、三氣化磷、酸酐等存在的条件下通过缩合两分子的/V- (3, 3-二甲基丁基)-L-a-天冬氨酸-召-酯形成。
都具有甜味或苦味。与之形成对比的是,甲基-a-D-吡喃葡萄糖苷的二脱氧衍 生物和海藻糖的四脱氧衍生物总是苦的而没有甜味,这就和它们的单脱氧衍生物在 味觉特性上不一致。因此也可以推知它们对受体的作用方式不一样(图丨-10)。
已知TCK只有在亲水的溶剂中才能高度溶解,但在保证酶解反应能得到 必要的水的前提下,a-半乳糖苷酶却被证明在与水不互溶的有机溶剂中, 最稳定并具有最高的活力。这个矛盾,可以通过使用被含水缓冲液预饱和的 有机溶液时得以解决。研究发现,高水混溶的溶剂如二氣六环、丙酮、甲醇 和四氢呋喃等,即使使用高达30%的含水缓冲液进行预饱和,也不支持 a-半乳糖苷酶的水解反应。但在含水缓冲液预饱和的正丁醉、甲基异丁基 酮和乙酸乙酯三种溶液中,TCR的溶解度均达到50%以上。这些溶剂同时 也支持a-半乳糖苷酶的活力,只是三者对三氣蔗糖的溶解性存在很大的差 別,如表3-9所示。
现在,人们正努力研究以期分离出能引起上述反应的专一微生物。已发现很 多细菌具有分-葡糖犴酸酶的活性,能将甘草甜素水解成甘草亭酸。只有两种细 菌可将3 -脱氧-18 -卢-甘草亭酸还原成甘草亭酸或3 -表-18 -甘草亭酸。 从人的新鲜粪便中分离出的瘤符球歯属(Riimirwcoccus)具有水解甘草甜素生成 18 -P -甘草亭酸的功能,另外可将3 -脱氢-18 -甘草亭酸还原成对映体 3-表-18-0-甘草亭酸的梭状芽孢杆菌(Clostridium)也是从人刚排出的粪便 中分离出来的。这两种细菌的混合体能将甘草亭酸异构成3 -表-18 -办-甘草 亭酸,反过来也如此。这一过程可能是通过氧化中间体3-脱氢-18-/3-甘草 亭酸而进行的。甘草甜素转化成3-表-18-分-甘草亭酸是分几步进行的,其 中的终端异构物(isomer)是几种细菌的?种产物。所有变化可概括成:甘草甜
纽甜还具有其他一些突出性质,在一般的用量水平上可认为是一种无能量的 甜味剂,它可以与较广范围的食品及食品配料共同使用。例如,与阿斯巴甜不 同,纽甜不存在与还原糖或醛基风味物质发生相互作用的问题。它具有独特的风 味增强性质,且不会引起龋齿。
(-)甜味受体的发现
图3-6 2CTC时三氣蔗糖水济液 (0. 1% )在不同pH环境中的稳定性图3-7 751时三氣鹿糖水溶液((X丨%) 在不同pH环境中的稳定性

展开阅读全文
本站部分文章来自网络,不代表立场及观点,转载请注明出处,如有侵权请联系即删除。 广告合作事宜,请联系:133 2802 0789(微信同号)

你也可能喜欢

评论已经被关闭。

插入图片
微信 微信
微信
电话 电话
13328020789
返回顶部