环江县果糖

微信扫一扫,分享到朋友圈

环江县果糖

环江县果糖
加入16. 8g碳酸氢钠(0.2mol),于50T下恒温lh。反应混合物抽真空以去 除/V-甲基吗啉、水和二甲基甲酰胺。剩余物溶解于40mL乙酸酐(0.41mol) 后,加人6. 5g乙酸钾作为催化剂(0.066mol),加热到105-UCTC,恒温反应 2.0~3.5h。稍微冷却后,将反应混合液倒人冰水中,其间需不停搅拌。过滤沉 淀并用水洗涤,得到的固体在真空50弋干燥至恒重,加人丙酮-甲醇(1:9)罝 于Ot,经过滤、洗涤、干燥、重结晶等处理,得到白色晶体产物,为6,广, 6、三氧-三苯甲基-五乙酰基蔗糖(TRISPA)。
4,6, \\ 6'-四氣半乳糖基蔗糖是第 的碳水化合物衍生物,其甜度为蔗糖的200倍,通过三步处理法用磺酰氣对蔗糖进 行选择的氣化所得,见图3-59。在-30T的低温下,在嘧啶中用磺酰氣对蔗糖处 理,得到4, 6, 6'-三氣-衍生物。然后在-5T下使用1,3,5-三甲基苯磺酰 氣处理6d,选择性在c-r上发生取代,最后于140T下,在二甲基甲酰胺中用氣 化锂处理18h后转化为氣,即生成4,6, T, 四氣半乳糖基蔗糖。
⑤棉籽糖水解法。
在酸性催化剂作用下,蔗糖与三烷基原酸酯(如原乙酸三甲酯,或原乙酸 三乙酯)反应生成蔗糖4, 6-原乙酸酯,然后水解成S-4-a (蔗糖-4-乙酰 酯)和S-6-a (蔗糖-6-乙酰船)混合物,再在特定条件下使S-4-a上 C-4乙酰基发生迁移作用生成S-6-a,再进行选择性氧化,脱乙酰而得三氧 蔗糖。
低熔点混合物是指反应物按一定比例混合后得到熔点比反应各成分的熔点都 要低的混合物。用这种混合物作为溶剂的反应也称无溶剂反应。2000年,Chuly oung Kim等用无溶剂反应的方法合成阿力甜二肽的衍生物N -苄氧羰基-L -天 冬氨酸乙酯-D-丙氨酰胺(W-CBZ-L-A8P (OEt) - D-AlaNH2),其中 N -苄氡羰基-L -天冬氨酸乙酯-D -丙氨酰胺是通过N -苄氧羰基-L -天冬 氨酸二乙酯(/V-CBZ-L-Asp (OEt) OEt)和 D-丙氨酰胺(D-AlaNH2)在 ? -胰凝乳蛋A酶的催化下缩合而成。Chulyoung Kim等还研究了此低熔点混合物 的特性和最佳反应条件。
上述体外分析结果,与动物体内试验及人体试验结果没有联系。
二、阿斯巴甜的甜味特性一)阿斯巴甜的甜度阿斯巴甜具有淸爽、类似蔗糖一样的甜感 涩味或金属后味,这是它的一个很1[要的优点 甜味剂的口感对比,图2 - 16所示为阿斯巴甜与蔗糖甜味特性的比较W2-15不同甜味剂口感对比 (甜味等用于丨0%的蔗糙水滚液>入口初有苦粗味图2-16阿斯巴甜与蔗糖的甜味特性对比 ——丨0%脒糖水溶液 SMmVkg阿斯巴甜在食品和软饮料中,通常情况下阿斯巴甜的甜度是蔗糖的180 ~220倍(表 2-4)。总的说来,阿斯巴甜的相对甜度与对照物蔗糖浓度呈负相关,并随不同 的香味系统、pH、品尝温度和蔗糖或其他糖的浓度而发生变化。蔗糖浓度与等甜度下W斯巴甜浓度的比值。
1985年,山田等人用含有双糖苷A及甜菊苷的甜菊提取物喂养大鼠22个月 进行慢性毒理试验,结果表明提取物对大鼠的最大无作用量是550mg/kg。另一 个2年的喂养试验表明,甜菊提取物没有慢性毒性和致癌性。R. E. Wingard等人 的活体外试验表明,大鼠肠逬微生物能将甜菊双糖A苷降解成甜菊醉,转化率 大约为65% ,而相同条件下甜菊苷则几乎全部转化成甜菊醇。
因此,甜味的蛋白质受体对甜味分子,尤其是含有强疏水性取代基团的甜味 分子,具有空间结构的要求。这种要求是由蛋白质受体的空间结构所决定的,例 如甜味分子AH、B、X生甜团的构象必须呈顺时针排布可能就是这种空间结构 的要求之一。而实际的空间要求要比这复杂得多,也丰富得多。可惜的是,作为 甜味受体的蛋白质分子至今仍未被成功分离出来,因此这个设想只能等到甜味受 体蛋白质分子的结构被弄清楚后才能得以最终证实。
(三)通过水解实现各种甜菊双糖苷之间的相互转化加碱皂化甜菊苷和甜菊双糖E苷可生成相同的甜菊醇糖苷,这过程通过添 加10%Na()H或KOH水溶液,经过lh的回流反应即可完成。通过使用含有 KOH的甲醉-水溶液,可提髙甜菊醇糖苷的得率。

展开阅读全文
本站部分文章来自网络,不代表立场及观点,转载请注明出处,如有侵权请联系即删除。 广告合作事宜,请联系:133 2802 0789(微信同号)

你也可能喜欢

评论已经被关闭。

插入图片
微信 微信
微信
电话 电话
13328020789
返回顶部