福绵区阿斯巴甜

微信扫一扫,分享到朋友圈

福绵区阿斯巴甜

福绵区阿斯巴甜
(五)棉轩糖水解法
又有人提出了甜味分子的多点结合理论(如multipoint attachment theory, MPA)来解释蔗糖衍生物的甜味机理。根据这个理论,卩-蔗糖属于!},、B2、 AH,、AH2、XH,、XH2、G,、E_、G2' E2、G3、E3、G4、E4 类甜味剂。而蔗糖 的三氣或四氣衍生物,如4,r, 6f-三氣蔗糖(650x)和4,r, 4',6'-四 溴半乳糖基蔗糖(7500 x>,则属于 B、AH,、AH2、XH2、G,、E,、G2、E2、 G3、E3、G4、E4类甜味剂。正是由于甜味分子与受体在B (C-4)部位作用增 强,且 G,、G4 (C-6,、C-l')或 G,、G2、C4 (C-6\ C-4\ C - T)的空 间构象更适合受体蛋白,因此这两种蔗糖衍生物的甜度比蔗糖强。
基间二硫键是Neoculin异型二聚体相互连接的歌要条件。这样的结构特征使 Neoculin的结构有更大的可变性,并有助于Neoculin在实现构象剧烈变化的同时 保持其二聚体结构。综合观察结果——Neoculin溶解于纯水(pH 7.0)也能产生 轻微的甜味,研究人员推测,Neoculin的结构是处于开和合的动力平衡状态中 的,中性环境和酸性环境均会破坏Neoculin的这种平衡状态,使结构分别转向闭 合和打开的状态。但只有当分子处于打开状态,才可产生强烈的甜味作用。研究 人员还构建了 Neoculin与甜味受体——T1R2-T1R3的对接模型,并根据研究结 果猜测酸的介入会打破Neoculin的平衡状态而转向开的状态,从而发生配体-受 体相互作用。
四、安赛蜜的应用
八1^0—在朽8(^1?提出的甜二肽分子基础上,扩展了 Kaneko的氨基酸立体 化学模塑(图2-74中的IV)。在这个模型中,NH/和C0/基团连接于甜受体 上,侧链R对甜度影响很大。例如,甘氨酸(R = H)和D-丙氨酸[24] (R = CH3)只有较弱的甜味,而D-色氨酸[25] (X = H)和6-氣-D-色氨酸 [25] (X = C1)的甜度分别是蔗糖的35和1300倍。甜度的增加是由于K基团 与受体之间存在着疏水链和色散力的缘故。对于甜二肽V來说,分子下半部第 二个氨基酸占据了 IV中氨基侧链R的位罝。这样,AH-B基团仍是NH/和 C00 ,虽然其间隔要远一些,但仍在Shallenberger和Acree定义的0.25 ~ 0. 40nm范围内。IV中氨基酸手性中心基团的定位与二肽V和VI中天冬氨酸手 性中心的一样,只不过前者是D-型而后者是L-型而已。事实上V和VI中的 竣基团是侧链的一部分(VI中是R基团),这反映了立体化学分配上的变化 情况。
(一)嗦吗甜的一级与二级结构(氨基酸的组成与颠序}
图3-23 =苯基磷氧化物与氣化亚砜的氣化机理
(2)通过/V-(3, 3-二甲基丁基)-L-a-天冬氨酸酯酰氣和丨苯 丙氨酸甲酯缩合来制备,反应过程中要通过通入HC1气体使反应液保持酸性, 以防止L-苯丙氨酸甲酯的自身缩合。
图4-8淀粉思对甜菊苷 转化效率的影响
表2 - 33所示为纽甜在一些典型应用中的一般用萤水平。由于在酸性pH范

展开阅读全文
本站部分文章来自网络,不代表立场及观点,转载请注明出处,如有侵权请联系即删除。 广告合作事宜,请联系:133 2802 0789(微信同号)

你也可能喜欢

评论已经被关闭。

插入图片
微信 微信
微信
电话 电话
13328020789
返回顶部