城固县安赛蜜

微信扫一扫,分享到朋友圈

城固县安赛蜜

城固县安赛蜜
(三)阿斯巴甜的协同增效作用阿斯巴甜可与强力甜味剂或碳水化合物型甜味剂混合使用,这就进一步扩
决定。”
如果快速升温,则要在更髙的温度下才会分 解。其酸型有明显的熔点123.5X:。安赛蜜 在紫外227rmi范围内有最大吸收峰,消光系 数= 1.0762 xlO4。
甜菊苷带有轻微的类似薄荷醇的苦味及一定程度的涩味,味觉特性要比甜菊 双糖苷A差些。随着产品纯度的提高,甜菊苷的苦涩味冇所减轻,图4-3所示 为甜菊苷与蔗糖、甘草甜素在等甜度条件下味觉分布的对比情况,从中可以看出 除f持续的后味外,甜菊苷的口感类似蔗糖。有些文献上提到的部分配方,目的 都是为了改善甜菊苷的味觉特性,掩盎其不良后味,所用的配料包括氨基酸、结 晶果糖、蔗糖和葡萄糖酸内酯等。甜菊苷与甘草甜素-?起使用可起到相互改善n 感的作用,与阿斯巴甜、甜蜜素或安赛蜜混合也有协同增效作用,但与糖铕混合 时口感的改誇甚微。
这是英囯Tate & Lyle公司提出的新方法,首先利用芽孢杆菌属的菌株在 30弋下发酵Glc,生成葡萄糖G-6-a (葡萄糖-6-乙酰酯),采用甲醉抽提及 硅胶柱层析分离相结合的方法提纯,然后G-6-a与蔗糖的混合物,在由巨大 芽孢杆菌产生的果糖基转移酶的作用下,生成S-6-a,采用色谱分离的方 法,可分离出70%纯度的S-6-a。将之与Vilsmeier试剂反应对4、厂、6'三个 羟基进行选择性氣化后,再经脱乙酸基反应即得到终产物三氣蔗糖C
自从开始研究甜蜜素以来,人们至少已对它或它与糖精混合物进行了 30次 的致癌性试验研究。在这些试验中,实验组没显示任何具有统计学意义的膀胱癌 发病率。大量的有关大鼠、小鼠、狗和猴的饲养试验表明,摄取甜蜜素后,这些 动物并没发生癌变。即使口服大量的甜密素后,它们也未发生癌病变现象。在可 被接受的毒理学标准和科学的统计学分析基础上,所有这些试验结果足以得出 “甜蜜素不是动物的致癌物”这一结论。
阿斯巴甜分子中的生甜闭尽管AH、B甜味理论能够很好地解释已知的所有甜味化合物的甜味特性, 但这种理论仍然遇到了诸多挑战:①虽然在甜味分子中都可以找到适当的AH、B体系,但许多拥有AH、B 体系的化合物并不甜。②AH、B理论可以解释甜味剂的甜味特性,却不能解释高效甜味剂的高效 甜味特性。1972年Kier在研究1 -烷氧基-2-氨基-4-硝基苯(图丨-7)时,引人 了另一分子特征即疏水(亲油)结合基团X,于是形成了甜味三角形理论 (AH、B、X理论)Q X距离AH的A约0.35nm,距离B约0.55nm。后来Hough 也认为除AH、B系统外,还应有一个亲油性或疏水性的第三连接点,这就承认 了 Kier的甜味三角形理论(图1-8)。Shallenberger本人也修改了他的理论,用 一个三角形概念来描述对映体的甜味(图丨-9)。丨-烷氧基-2-氨基-4-硝 基苯的高甜度可以解释为其1位基团的极化性,这个1位是“第三连接点X”, 它和硝基(B)、邻位的氢(AH)联合产生甜味。在D-氨基酸中,缬氨酸、亮 氨酸、色氨酸和苯丙氨酸都具有比较强的甜味,这是由于它们都含有疏水基的缘 故。因为甜味分子的琉水性基能与甜受体膜的疏水性部位相结合,使甜味分子易于 被甜受体膜所吸附。可以认为,亲油-亲水平衡是决定一种分子甜度的重要因素。
甜受体研究表明,化学感是由有序脂质传导,酸、咸、苦味受体均系脂质,甜 受体是蛋白质,苦受体可能也与蛋白质相连,它们均位于味细胞顶端的微绒
对不同内阻下场强对转化率和活细胞的影响作了研究(图5 -18)。细胞悬 浮液与1叫经Bgi fl酶切的pCLRE2混合后在电容25jjlF下进行电脉冲转化,电 脉冲后,细胞在30T添加了 lmol/L山梨糖醇的YPD培养基上培养6h。在场强 为3.75kV/cun和内阻80W1时得到最高的转化率,约为1400个转化体/jxg线性 pCLRE2。在3. 75和5. 0kV/cm和内阻6(X)、800或100011时转化率较高[图 5-18 (1)]0这些条件下细胞存活率为10%?40%,实际脉冲时间为11 ~ 17ms [图5-18 (2)]。当内阻200或400ft时,转化率低。
表3-9 TCR和三氯蔗糖在各种溶剂中的溶解度 单位:%

展开阅读全文
本站部分文章来自网络,不代表立场及观点,转载请注明出处,如有侵权请联系即删除。 广告合作事宜,请联系:133 2802 0789(微信同号)

你也可能喜欢

评论已经被关闭。

插入图片
微信 微信
微信
电话 电话
13328020789
返回顶部