黎平县索马甜

微信扫一扫,分享到朋友圈

黎平县索马甜

黎平县索马甜
表2 -24 符合下列通式化合物的结构与甜度的相互关系
表S -5 嗉吗甜对各种风味的彩响悄况1
不同来源的半乳糖苷酶催化得到的转糖苷产物见表4 -23。其中K. laclis 的芦-半乳糖苷酶不对RU进行转半乳糖苷反应。环状芽孢杆菌的-半乳糖苷 酶在反应初始阶段优先将半乳糖基转移至RU的19 -羧基相连的葡糖基上,得到 以芦-1,4糖苷键连接的RGal - la,然后得到RGal - lb。RGal - la是CGTase 转糖苷的良好受体,因为其19-羧基相连的葡糖基上的C4-0H已用半乳糖基 保护。而大肠杆菌的卢-半乳糖苷酶主要将半乳糖基转移至19-羧基相连的葡糖 基上,得到以尽-丨,6糖苷键相连的RGal-2,该产物不适于用作CGTase催化 转糖苷反应的糖基受体,因糖基会优先与13-0H相连的葡糖基连接。米曲裤 {As. oryzae)和P. 的芦-半乳糖苷酶催化得到RGa丨-1、RGal - 2、
另一方面,分子内氢键对提髙甜味化合物甜度的间接贡献还表现在:如果甜 味分子的AH基团在形成分子内氢键中扮演受氢体的角色,则可以大大增强AH 基团在和甜受体B基团发生氢键键合时作为H供体的供H能力,从而使甜味分 子与甜受体的结合更为紧密,并最终导致甜度的增加。相反,如果甜味分子的B 基团在形成分子内氢键中扮演氢供体的角色,也会出现相同的效应。例如在 4',6^-二氣蔗糖中,该化合物的疏水性因氣替代而大大增加,并因C-T位上 羟基仍和C-2位上羟基保持分子内氢键连接而使后者受氢能力大大增强,因此 它的甜度可达到蔗糖的3500倍。卤代蔗糖普遍都能建立这种形式的氢键,有些 化合物如三氣蔗糖在二甲亚砜溶液中也存在上述氢键。
三、甜蜜素的安全毒理学分析
注:丨0.5g的饮料粉.可冲典成丨.9丨.成品饮料^
生产。
白云参(Phbmis beumicoides)生长在我国云南、四川和两藏等地,系唇形 科(Labiatae)多年生草本植物。1983年,日本Tanaka等人首先用丁醇从该植 物中分离提取出两种双萜糖苷——Baiyunoside和Phlomisoside I,它们的化学结 构如图4-39所示。
6'-CH2 (Xs8),后者与两个疏水部位构成生甜团,分别为r-CH2 (Xs4)和 6-CH2 (Xs5)。这种多敢疏水作用导致蔗糖分子与受体不同侧链形成色散键, 从而使甜味增强。生甜团三合体(AHs/Bs/Xs4、AHs/Bs/Xs5、AHs/Ba/Xs8)的 分子构象,与预期的顺时针方向一致。使用髙度亲油性氣原子,取代蔗糖分子葡 糖基和果糖基上特殊位置的羟基,这些特殊位置包括C-4、c-r、C-V和 C-6\而不取代6-OH基团,可以使蔗糖甜味明显增强。表3-18所示为三氣 蔗糖及其衍生物与受体蛋白的作用部位。

展开阅读全文
本站部分文章来自网络,不代表立场及观点,转载请注明出处,如有侵权请联系即删除。 广告合作事宜,请联系:133 2802 0789(微信同号)

你也可能喜欢

评论已经被关闭。

插入图片
微信 微信
微信
电话 电话
13328020789
返回顶部