冷水江市安赛蜜

微信扫一扫,分享到朋友圈

冷水江市安赛蜜

冷水江市安赛蜜
系数表明,斥电子取代基会带来分子甜度的增加。这类取代基能增加酰胺氮原子 的氢键作用力,故可带来分子甜度的增加。前述的Fujino化合物具有很高的甜 度,这也可用方程式(2-32)来解释。在该类化合物中,两个酯基团的存在使 得o■?值增大,而2, 6-二甲基环己基和葑基酯上的甲基分支使得(%)2值增 大,W此增大了分子的甜度。
W有人做过2次软饮料试验,结果很能证明阿斯巴甜的损失对产品的可接受 性能的影响很小。有个试验是依次减少阿斯巴甜的使用量,以模拟贮藏过程中阿 斯巴甜的逐渐损失。当阿斯巴甜数虽减少至只有那些使用蔗糖的饮料甜味的 55%时,发现使用阿斯巴甜的饮料(包括可乐、柠檬汽水和无酒精饮料)的品 质仍然良好。
显然,具有显著a-半乳糖苷酶活力的酶制剂都是从霉菌菌丝体中获得的。 在5个具有最强的水解TCR活力的筠菌中,有4个是从W.wVwcefl中获得的,有 1个是从C. muscae中获得的。其中Af. vitmcea ATCC 20034在所有被测试的微生 物中,对TCR具有最高的水解能力。从该微生物中提取的a-半乳糖苷酶(EC 3.2.1.22)不含转化酶的活力,目前已在甜菜糖精炼中被用来水解棉籽糖。它还 可以被固定化,此时对TCR则有更强的水解能力。
采用电穿孔法,将质粒转至产朊假丝酵母(Candida ulUis)中。该方法较简 单并能实现Candida utUis的高效转化。对转化条件进行优化以达到最优转化率。 据研究,酵母在最优电脉冲转化率下存活率为50% -70% ,因此通过调整场强、 内阻和电容大小,使Candida utUis的存活率达10%?70%。在加了4(Vg/mL CYH的YPD平板培养基上培养C— ulUis转化体(4(Vg/mL CYH是野生塑 Candida ulilis能在YPD培养基生长的最高浓度),进行CYH抗性转化体选择。 YPD培养基组成为:2%葡萄糖、l%BaCto酵母抽提物、2%Bacto蛋白胨。由于 电脉冲导致酵母细胞膜的破裂,使细胞对渗透压更敏感,因此电脉冲处理后细胞 立即在YPD培养基上培养不形成菌落D电脉冲处理后细胞立即分散在选择性培 养基,也不能得到CYH抗性菌落,需在30弋含lmol/L山梨糖醉的YPD培养基 上预培养一段时间后,再转移至含CYH的培养基才能得到转化子。
后一种假设需要些条件,它至少要求甜味与苦味受体同时存在于一个细胞 内。对同时具有甜味和苦味的甲基a - D -吡喃甘錤糖的研究证实了这个观点。 如果分子确在受体上两端极化,那么用蔗糖浓溶液预饱和甜受体就能阻止另一种 方式的结合。如果分子同时分别分配给甜味、苦味受体细胞的话,则对它们各自 的结合方式不产生什么影响。当用蔗糖预饱和舌头时,具有苦味的甲基a-D- 甘露糖苻的苦味会减小些,而同样悄况对奎宁(纯苦分子)的苦味却不产生什 么影响。因此,同时具有苦味和甜味的甲基a吡喃付孫糖苷能同时结合甜 受体与苦受体,用蔗糖预饱和一种结合方式(如与甜受体结合)就会影响另一 种方式的结合(如与苦味受体结合>。从另一个方向来进行这方面的实验,如用 奎宁来预饱和会得到同样的结果(见图1-35)。因此,至少有些甜受体与苦受 体之间的距离极近,在0.3~0.4nra范围内。H前,一个分子具有不同的结合方 式这种观点是许多假说的主题。受体本身还是假说的实体,各种有关它们的本质 的理论是通过对有味分子底物的化学研究建立起来的。
(四)甘草甜素的抗炎症效果甘草甜素具有抗炎症特性,但有关机理尚未完全弄淸楚。让白鼠口服甘草亭 酸,60min后再用1%的角叉菜胶注射A鼠的爪子(注射剂量0. lmL),发现甘 草亭酸能减轻由角叉菜胶引起的炎症。甘草亭酸还具有阻止由葡聚糖诱发的白细 胞向胸膜位转移的作用,但它不会抑制白鼠腹膜白细胞中前列腺素的释放和生 成,也不会改变猪肠中回前列腺素诱导产生的收缩作用。
4葡糖基化的研究发现,在丨3位引入2个 葡糖基后甜味特性明显改善,而在19位上引人 葡糖基则使甜味特性变差。甜菊醉双苷(结构式 如图4-6所示〉,经环糊精葡糖基转移酶催化在 13位引人葡糖基,其19位由半乳糖醋键保护,结 果发现增加1或2个葡糖基会使甜度有明显增加,
八、三氣蔗糖的安全毒理学分析
转糖苷反应中的产物变化情况

展开阅读全文
本站部分文章来自网络,不代表立场及观点,转载请注明出处,如有侵权请联系即删除。 广告合作事宜,请联系:133 2802 0789(微信同号)

你也可能喜欢

评论已经被关闭。

插入图片
微信 微信
微信
电话 电话
13328020789
返回顶部