福田区甜蜜素

微信扫一扫,分享到朋友圈

福田区甜蜜素

福田区甜蜜素
有趣的是,葡萄糖C-2位上的羟基可以部分作为质子受体,如在蔗糖、松 二糖和a-麦芽糖中;也可以不同程度地作为质子供体,如在异麦芽糖和办-麦 芽糖中。因此,在形成分子内氢键过程中,葡萄糖基C-2位上的羟基既可以作 为分子内氢键的受氢体,又可以作为分子内氢键的供氢体。
图3-16脱三笨卬基的反应式 注:三笨基氯甲烷极易水解为=笨基平醉、
图4-9中比较了以挤压膨胀淀粉、原淀粉、液化淀粉为葡糖基供体时,甜 菊苷的转葡糖基反应特性。挤压膨胀淀粉和液化淀粉的初始反应速率差别不大, 但挤压膨胀淀粉的转葡糖基反应上升更快,24h后得率达0.78,比液化淀粉 (0. 68)髙。原淀粉的转葡糖基反应很慢,这说明环糊精葡糖基转移酶不能有效 地进攻原淀粉的晶体结构。
(1) pET-3a 质粒示意ffl (2) PET-3a/SNMe-SW 构建方式
(一)阿力甜的溶解性在等电点pH条件下,阿力甜极易溶于水,也易溶于其他极性溶剂(表 2-34)0阿力甜几乎不溶于亲油溶剂中,这与分子极性结构的理论分析结果相 一致。从表2-35可知,阿力甜在水中的溶解度随着温度的上升和pH偏离等电 点而快速上升。在pH3或pH8时,室温下的溶解度超过40%表2-3S 阿力甜在不同温度和pH的水中的溶解度单位:质S分数%阿力甜的髙水溶性与其他二肽甜味剂(如阿斯巴甜)极冇限的水溶性形成 鲜明的对比,这有助于调制高浓度的浓缩甜溶液,而便于复杂配料的混合操作。
阁4-3等甜度甜菊背、蔗糖及廿草甜素水溶液的甜味分布曲线 1—荊糖2_甜菊苷3—甘草甜素
自1965年底,在历经16年的风风雨雨之后,对于美国纽特公司来说,1981 年7月24日是一个很值得永远纪念的日子。这一天,FDA最终决定再次批准阿 斯巴甜的使用,并于同年丨0月22日开始生效。随后的1982年8月13日和1983 年7月8日,FDA先后两次批准扩大阿斯巴甜在食品中的应用范围。在此之后的 6年间,FDA又相继批准阿斯巴甜在很多食品中的应用。1996年,FDA又批准 阿斯巴甜在所有工业化食品中的应用。
鉴评人员对几个嗦吗甜突变样品,与植物嗦吗甜、蔗糖、阿斯巴甜的甜味强 度及口感特征的评估比较,发现有一个嗦吗甜突变体仍具有很髙的甜度,相比于 植物嗦吗甜,它与蔗糖的时间-甜度曲线更接近。另外几种突变体的结果也较 好。这表明对嗦吗甜基因进行改造,可以得到不同甜味特性的嗦吗甜类似物。
二肽甜味剂对N-端氨基有严格的要求,首先它必须是两性离子,而且必须 与带电基团保持一固定距离,因为只有这样的二肽分子才符合Shailenberger和 Acree提出的AH-B甜味理论模型。1972年,Kiei?在著名的Shailenberger甜味 AH/B模型上引人X基团,提出三点结合生甜理论(AH-B-X),该理论沿用 AH+为能提供氢离子以形成氢键的基团(区域),B-是能为构成氢键提供所需 氧负离子的基团(区域),此外,引人的X是通过亲水或疏水特性与上述两块区 域相交,并在甜味感知中起到强化作用甚至决定性作用的基团(区域)。
选用正交表L,6 (44)安排试验,试验方案如表3-5所示。 表3-S 三苯甲基化和乙联化反应正交试賒

展开阅读全文
本站部分文章来自网络,不代表立场及观点,转载请注明出处,如有侵权请联系即删除。 广告合作事宜,请联系:133 2802 0789(微信同号)

你也可能喜欢

评论已经被关闭。

插入图片
微信 微信
微信
电话 电话
13328020789
返回顶部