秭归县阿力甜

微信扫一扫,分享到朋友圈

秭归县阿力甜

秭归县阿力甜
图6 - 1糖楮、糖楮钠和糖梢钙的化学结构
大约与此同时,意大利的研究者描述了对阿斯巴甜蛋氨酸二肽化合物构象优 先性的研究结果,认为丨^口^是其优先存在的构象。Lelj等人依据阿斯巴甜的 FiDn构象优先性,提出一个具有普遍意义的甜受体结合模型,这其中有改进的 地方是将AH-B部分翻转了 180%这个模型能合理解释阿斯巴甜的D,D和L, D非对映体为何具有苦味。在任何情况下,每一种甜味化合物都能从Shallenberger 阻碍层的对面去接近甜受体,假定这个阻碍层是完全打开的。
尽管对三氣蔗糖结晶体X -射线的结构分析表明,在2 - OH和3' - OH之间 会形成一个分子内氢键,其中2-OH是质子受体,3'-OH是质子供体。但在一 个稀释的含水溶液中,分子内部的氢键很可能分裂,断裂开的部分可分别与螺旋 形甜味蛋白质受体中末端氨基酸残基上髙度缺电子的NH/ (AHr,下标i■是 指甜味蛋白受体,下同)和富电子的CONH2 (Br)形成外部氢键。因此,3'- OH/2 -0具备成为三氣蔗糖AH/B对组成的客观条件。
4-氣-4-脱氧-a-D-吡喃半乳糖苷-1,4,6-三氣-1,4,6-三 脱氧-々-D-塔格呋喃糖苷的甜味是蔗糖(5%)的205倍,4-氣-4-脱氣 _a_D_P比喃半乳糖苷一1, 4, 6_三氣-1, 4,6_三脱氧_芦_0_果聚呋 喃糖苷是蔗糖(5%)甜度的2200倍,这两种三氣蔗糖衍生物甜度相差10 倍。分子结构不同之处主要在C-4’,可见C-4'上卤取代基及其立体化学结 构对甜味具有重要影响,见图3-57。4 -氣-4-脱氧-a-D-批喃半乳糖苷 -1, 6-二氣-4-卤代-1, 4,6-三脱氧-分-D-呋喃果聚糖的C-4'卤代 成分甜味递增顺序为:F>Cl>Br>I。C-f取代基对研究V -脱氧-4' _ 卤代蔗糖类似物结构和甜味之间关系相当重要。Hooft等人认为三氣蔗糖衍 生物甜味构象具有 =75° 和少c_2,_0 + c.,+5 =95。的特
关于甜叶菊甜味成分的研究,1908年就有Reseneclc等人的报道。1931年 Lavielle从甜叶菊中分离出甜菊苷,分析它是由1分子甜味菊醇和3分子葡萄糖 组成的糖苷。后来,经众多研究确立了甜菊苷的分子式。日本还最早分离出甜菊 叶子中的其他几种成分,包括甜菊双糖A苷、B苷、C苷、D苷和E苷等。1985 年Kinghoron等人的分析认为,甜菊叶子中含有双萜、三萜、固醉、类黄酮、单 宁及挥发性油等31种成分。日本甜叶菊公司认为,挥发性芳香油、单宁和类黄 酮等是构成甜叶菊提取物不良风味的主要成分,称为“甜味质萤影响因子”。也 有人认为,甜叶菊的苦味是由于倍半萜内酯引起的。
还有些试验报道发现了糖精的代谢产物2-氨磺酰苯甲酸及2-邻苯磺基苯 甲酸,但这些试验所用的放射元素标志水平较低,代谢物仅依靠单一的薄层色谱 (TLC)检测,作者对是否排除了色谱过程中可能形成的后生物并非很有把握。
该生产方法所用主要原料为苯酐、氨水、液体氢氧化钠、液氣、硫酸、 盐酸、铜粉、亚硝酸钠、二硫化钠、甲醇、碳酸氢钠等,进行的主要化学反 应有酰胺化、祺夫曼降级、重氮、置换、酯化、氣化、氨化、酸析和中
糖精,学名为邻磺苯甲酰亚胺(sulfobenzic acid imide),分子式C7H503NS, 相对分子质里183. 18,结构式如图6-1所示。它为无色或白色的结晶或粉末, 其钠盐为水溶性。市俦糖楮实际是糖精钠,也可以制成钙盐,至于铵盐或其他的 糖精盐则用途有限。
(四)辅助因素对产率的影响研究表明,在低熔点混合物中加入适宙:的有机溶剂能降低混合物的熔点,从 而提商酶反应的效率。图2-66所示为加入不同溶剂对反应产率的影响。其中, 加入二甲基亚砜(DMSO)和2-甲氧基乙酸乙酯(MEA>能使产率达到60%, 而辛醉和正己烷的加人使产率低于50%。这可能是因为疏水性的有机溶剂能够 改进和保持低熔点混合物的特性,从而能够促进酶反应的产率。图2 -66 不同辅助有机溶剂对反应产率的影响 注:有机溶剂都按丨5% (w/w)的比例加人,苄氧羰基-L-天冬氨酸二乙《和D-内氨酰胺分 别加人0.5mmOl,

展开阅读全文
本站部分文章来自网络,不代表立场及观点,转载请注明出处,如有侵权请联系即删除。 广告合作事宜,请联系:133 2802 0789(微信同号)

你也可能喜欢

评论已经被关闭。

插入图片
微信 微信
微信
电话 电话
13328020789
返回顶部