叠彩区异麦芽酮糖

微信扫一扫,分享到朋友圈

叠彩区异麦芽酮糖

叠彩区异麦芽酮糖
阿力甜用酰胺键替代阿斯巴甜分子中不稳定的酯键,使得化学稳定性得以显 著提髙。甜度是蔗糖的2000倍,性质稳定,尤其是对热、酸的稳定性大。但用 阿力甜增甜的部分酸性饮料,经长时间It存后会出现一些不配伍现象,感官分析 发现有明显的硫味。液体产品中可与阿力甜反应产生异味的物质,多数是h2o2 或NaHS03等。1986年8月,美国FDA受理了阿力甜作为甜味剂和风味增强 剂应用在16种食品上的申请,表2 - 39列出了阿力甜的16种应用范围。 1996年,JECFA确定的阿力甜ADI值为lmg/kg。截至2008年,阿力甜尚 未被美国FDA认可,全世界只有中国、澳大利亚和墨西哥等少数几个国家 批准使用。
草亭酸。用髙效液相色谱可检测出血浆中甘草甜素和甘草亭酸的含最。用 12.5mg/0.5mL的剂量注射内鼠的静脉,不久血浆中甘草甜素的浓度迅速下降,在 最初的60min内下降速度很快,接者是缓慢的下_,再过120min后浓度稳定在 左右。当注射剂量为5mg/0.5mL时,最初60min内甘草甜素浓度急剧下 降,90min后几乎检测不到甘草甜素c对以口服方式进入机体内的甘草甜素及甘草 亭酸在血浆中的存在情况也做了分析。经口摄取后,30min内血浆中甘草亭酸浓度 达到最高值,240min后浓度开始下降。甘草甜素浓度的增加速度中等,在最初 240min内甘草亭酸的浓度大于甘草甜素,240min后它们在血浆中的浓度趋于相等。 甘草甜素的分子质萤较大,在肠道内先被转化为甘草亭酸后才被小肠吸收。
组成蔗糖的两个单元——葡萄糖和果糖,当它们被转化成甲基- a - D -吡 喃葡萄糖讦或海藻糖和甲基-D -吡喃果糖苷时,形成的化合物甜度分别只 有蔗糖的丨/丨0和零,这说明甜味化合物要求生甜团三角形呈-种特殊的排列组 合。处于结晶状态和溶液状态的蔗糖,其a-丨)-吡喃葡萄糖基单元的构象楚椅 式(4C,),而其沒-D-呋喃果糖基单元的构象是船式(3T4);呋喃环在它的右 角处连接于吡喃环平面上,娃通过两个分子内氢键0-6'连接于0-5和厂连 接于0-2而实现的(见图3-38,未加“”’符号和加了 符号的数字分别表 示葡萄糖甚和果糖基单元上的碳原子和被犇近的氣原子)。
日本人食用嗦吗甜已有十几年的历史了,除了上述典型的毒理试验外,人们 还仔细分析研究了日本人的食用情况及食用结果,结果都没发现仟何不良效果。 这是很正常的,因为一个人终身摄取的嗦吗甜总数苗:是很少的。但有一点箝要指 出,就楚它是高溶性的强力蛋穴粉末,如果不小心吸人体内,敏感者有时会出现 过敏发炎现象,因此处理原料时必须小心。添加些填充剂或配制成液体制品可避 免这个危害。
基于Searle公司的开拓性工作,Ariyoshi提出L -天冬氨酰胺的甜味模型理 论,这个酰胺是用具有合适立体构象的小基团R,和大基团K2进行《-取代的。 通过对这种模型的改进,发现刚性带有适当分支的R2基团能明显提高化合物的 甜度。所有的高效甜味剂(甜度大于蔗糖的1000倍)至少有一个酯基或酰胺基 团作为R,或R2,而且肽键上不能有取代基。天冬氨酰残基可通过氨基的酰化作 用来改性,这样有时会产生非常甜的化合物。
图2 -92 带有芳香基闭取代基二肽甜味剂的分子结构
有三个独立的NMR分析支持了 FdD,构象。事实上是Murai等人首先提出 阿斯巴甜的构象优先性。在一个详细的研究中,他们使用具有空间专一性/3- CH2端经氘化处现的天冬氨酸和苯丙氨酸制备阿斯巴甜,就可确认分子中冷- (:H2质子的存在方式。之后通过对NMK分析,可知FnDn是优先存在的构象。 Takahashi等人在一个包含阿斯巴甜与环状糊精复合物的研究中,发现不管足对 复合的还是未复合的阿斯巴甜来说,FnDD是优先存在的构象。Asso等人描述了 存在于单合镨和镝复合物中阿斯巴甜的优先构象是Dn,尽管他们将之称为 hD,。
由于莫奈林的A链N端与B链C端非常靠近,因此研究人员利用基因工程 技术生产共价的连接单链莫奈林。单链贷奈林有两种类型:SCM和MNE1。SCM 是通过直接把B链C端的Ghi50连接到A链N端的Argl而得,它由94个氨基 酸残基组成。MNE丨则是通过Gly-Phe 二肽连接B链和A链而得,由96个氨基 酸残基组成。利用这些合成的基因,研究人员已经实现在不同的宿主细胞(大 肠杆菌、酵母等)中表达和生产奠奈林。
②不参与代谢,不提供能量,不会引起人体发胖。

展开阅读全文
本站部分文章来自网络,不代表立场及观点,转载请注明出处,如有侵权请联系即删除。 广告合作事宜,请联系:133 2802 0789(微信同号)

你也可能喜欢

评论已经被关闭。

插入图片
微信 微信
微信
电话 电话
13328020789
返回顶部