淮上区甜蜜素

微信扫一扫,分享到朋友圈

淮上区甜蜜素

淮上区甜蜜素
1999年,我国有人采用原核生物偏爱的密码子合成了编码单链莫奈林的基 因,使其在大肠杆菌中得到高效表达,奂奈林达菌体可溶性蛋白的20%。在此 基础h,又对单链莫奈林基因进行定点突变,获得突变莫奈林基W,其产物甜度 是蔗糖的4500倍,较天然莫奈林甜度(是蔗糖的3000倍)有显著提髙,产量达 240mg/Lo
Goodman及其合作者应用C -端氨基酸构象强制法,详细研究了基团的大小 和疏水特性对化合物甜味的影响。碳原子上允许双取代,表2-64所示为双 取代基分别是甲基[157]、乙基[158]和环烷基(至环己基)[159]化合物 的甜度,与表2-63所示化合物甜度一样。随着C-端氨基酸大小和疏水性的增 加,并没有发现它对化合物甜味有任何大的影响。当环烷基碳原子数由6增至7 时,化合物突然由甜味转变成苦味,这说明甜味受体和苦味受体是紧密联系在一 起的。表2 -64 双取代基二肽化合物的结构与甜度
(一)糖精的代谢
如图3 -22所示,Vilsmeier试剂是一种较好的氯代试剂,其优点表现在制备 容易和选择性较好,它可安全有效地氣化蔗糖分子4、r和&位,理论得率可达 80%以上。Vilsmeier试剂枭由无机酸氣化物与化学式为R2NCOX的义W - 二烷 基胺(如二甲基甲酰胺、二乙基乙酰胺)反应制得,其中X代表氢原子或甲基, R代表烷基。通常使用的无机酸氣化物有无氣化磷、光气和氣化亚砜等。
对阿斯巴甜及阿斯巴甜盐酸化物的晶体结构作了分析,沿着肽主链的键几乎 都是反式的。根据Goodman等人上述的观点,阿斯巴甜旁链优先存在的构象是 F.D,,而阿斯巴甜盐酸盐优先存在的构象是FBDI。在天冬氨酰羧基 和胺基呈反式存在,因此不是活性构象。相反,Gorbhz认为FuDi是活性构象, 因为它最符合Kier的甜味三角形模式。然而,Kier的三角形模式是根据硝基苯 胺而不是二肽确立的。Heijden等人认为二肽的甜味三角形要比硝基苯胺的大, 因此FnDB构象最符合。另一密切相关的化合物是阿斯巴甜的LiBr复合物,结晶 状态以F,D■为优先构象,所以在固体状态下,阿斯巴甜及其HC1盐、UBr盐的 优先存在构象均不一样。
②新橙皮苷二氢查耳制的为异阿魏酸、m -羟苯基丙炔酸和m-羟苯基丙 烯酸。
由于嗦吗甜有8个二硫键,因此其分子十分稳定,其抗变性能比其他绝大多 数水溶性蛋白(如白蛋白或溶菌酶)都来得强。光谱分析表明,它的a-螺旋度 较低(大约只占整个分子14%),分析其氨基酸组成也可预测到这点。这表明它 并不完全是刚性分子,它的旁链大多处于可溶解的环境中。
控制下表达得到苯丙氨酸和天冬氨酸的聚合体。该聚合体可以用不同蛋白酶, 如可溶性或固定化胰凝乳蛋白酶、水溶性或固定化枯草杆菌蛋A酶Carlsberg、 可溶性蛋A酶K和可溶性蛋内酶嗜热菌蛋白酶水解得到多肽,但这些酶都不 能专一水解得到Asp-Phe。可溶性枯草杆菌蛋甶酶Carlsberg或蛋白酶K的催 化专?性不强,得到的水解产物为ASp-Phe、Phe-Asp和其他由这些二肽聚 合的低聚物;用固定化枯草杆菌蛋白酶催化得到的结果最好,水解产物中绝大 部分为Asp - Phe。
Guadagni等人研究了二氢查耳酮的掩盖去除柑橘苦味物质(柠棣片素和柚 苷)的苦味作用。试验发现,水溶液中柠槺苦素和柚苷出现苦味的浓度分别为 1 mg/kg和20mg/kg。与丨%蔗糖溶液甜度相等的新橙皮苷二氢查邛酮能使柠檬苦 素出现苦味的阈值浓度提高1.4mg/kg,HDG (DI)能将之提高到3.2mg/kg, 与5%浓度的蔗糖溶液甜度相等的n和ID能使柚苷出现苦味的阈值浓度分别提卨 到49mg/kg和56rng/kg。用蔗糖掩盖苦味的效果均比II和DI的差,但柚苷二氢査 耳酮(I)不但不能抑制苦味,而且还会增强苦味。在这方而掩盖去除苦味效 果更显著的是Neodiosmin (VI),结构式见图4-31。它是新橙皮苷黄烷酮类似 物,本身没有味,但稀释至10mg/kg的Neodiosmin就能使苦味物质出现苦味的

展开阅读全文
本站部分文章来自网络,不代表立场及观点,转载请注明出处,如有侵权请联系即删除。 广告合作事宜,请联系:133 2802 0789(微信同号)

你也可能喜欢

评论已经被关闭。

插入图片
微信 微信
微信
电话 电话
13328020789
返回顶部