鄂温克族自治旗木糖醇

微信扫一扫,分享到朋友圈

鄂温克族自治旗木糖醇

鄂温克族自治旗木糖醇
甘草甜素既不会促进S.mu/ci/w的生长,也不会诱导牙斑的形成,相反,它 还能明显地抑制细菌在含有蔗糖介质的牙齿表面上的粘附和聚积。但口服甘草甜 素并不影响口腔内复杂的微生物平衡体系。由S.mu/mw在牙齿表面的依附对龋 齿的形成具有重大作用,因此甘草甜素能抑制由蔗糖引起的致龋齿细菌性牙斑的 形成,这一事实很令人感兴趣。甘草甜素的这种抗依附效果可能是通过对酶GTF 活性的抑制而实现的。通过观察甘草甜素对GTF酶制剂(从致龋齿细菌 中分离出)产生黏多糖的直接影响,证实了上述观点。
选择以滴入的方式往环化剂溶液中添加三氧化硫溶液;三氧化硫为氨蓰磺酸物 质的量的5倍,环化反应温度控制在-25?30%之间,环化时间选用0.5h;水解反应 温度为-丨5尤,水解时间为丨.5h。选用上述优化条件,安赛蜜收率可达81.6%。
蔗糖的化学结构(与天然D-蔗糖镜像关系D-蔗糖和L-蔗糖的甜味特性正好可与D-氨基酸和L-氨基酸相比较。 在许多情况下,D-氨基酸是甜的,而L-氨基酸却没有甜味。例如D-色氨酸 比蔗糖甜35倍,而L-色氨酸是苦的;D-苯氨酸比蔗糖甜7倍,而其L-异构 体是苦的。有人因此推断认为味蕾受体是不对称的或具有手征性,所以镜像化合 物的味觉感受不一样。然而着眼于D-蔗糖和L-蔗糖都具有相同的甜味特性, 可知这个推论还有很大的局限性。
甜味分子多点结合模型根据多点结合甜味理论,可以合理构造出各种甜味分子及其衍生物的多点结 合模型。首先确定甜味分子的两个特征结合点,即结合部位D (4-苯腈基)和 结合部位B (C02_或氧原子),然后就可以准确确定甜味分子的其他结合部位。
从图4-7可以看出,虽然加酶量不同,但反应一段时间后,转化反应趋向 平缓。增大酶量可加速达到转化平衡,但不能改变这种平衡;对各底物转化速率 比较发现,甜菊苷(S)的转化速率较快,其他糖苷转化速率较慢,只有在S基 本转化完成时才发生显著转化。因此当酶谊较少(<800U/g甜菊苷)时,在所 用反应时间内,转化未达到平衡,S的转化起主导作用。从转化底物来源看,当 加酶量较少时,主要为甜菊苷(S)进行转化,其他组分的转化萤较少。当酶届: 增加时,S的转化量增加较少,而其他组分的转化较显著。减少一半加酶虽同时 延长一倍反应时间的转化结果不如短时间但高加酶虽的结果,这可能是由于糖转 化过程中存在抑制作用。 由于到B前为止,还没有冇关奇异果素原子水平结构方面的资料,为了更好 地研究奇异果素的甜味,Antone丨la Paladino等预测了奇异果素的三维结构并应用 比较建模与分子对接技术模拟了奇异果素的二聚体和四聚体形态。 表S -4 化学改性对嗉吗甜甜味的影响情况 丨氨酸(甜度为蔗糖的35倍)转变成6-氣代衍生物,其甜度增加了 30 倍,为蔗糖的1000倍。这说明研究蔗糖的氣化衍生物也是可取的。然而,糖楮 (甜度为蔗糖的500?700倍)的氯化衍生物其甜度只有蔗糖的100 -350倍,氣 化处理并没有提髙该分子的甜度。 第二节甜菊双糖苷甜菊苷带有较明显的苦涩味及薄荷醇味,甜味特性不太完美。甜菊双糖A 苷的甜度大约是蔗糖的450倍,甜味特性比甜菊苷更接近于蔗糖。含有甜菊双糖 A苷的甜叶菊粗提取物也因此比纯净的甜菊苷更甜、风味更好。虽然甜菊双糖苷 仍带有轻微的苦涩味,但比甜菊苷要弱多了。甜菊双糖苷~在食品和饮料中的 用量很少,因此它带有的微弱苦涩味对其影响不大。由于甜菊双糖苷的甜味特性 好、甜度大,世界上已有数个国家和地区,特别是日本、以色列和美国都在努力 实现商业化生产。

展开阅读全文
本站部分文章来自网络,不代表立场及观点,转载请注明出处,如有侵权请联系即删除。 广告合作事宜,请联系:133 2802 0789(微信同号)

你也可能喜欢

评论已经被关闭。

插入图片
微信 微信
微信
电话 电话
13328020789
返回顶部