文峰区乳糖

微信扫一扫,分享到朋友圈

文峰区乳糖

文峰区乳糖
乳糖、RU浓度及反应时间对产物的影响见表4-21。随着底物浓度的增加, RGal-1、RGal-2、RGal -3的数量略有增加。RGal - 1主要在反应起始阶段 (1.5h)形成,然后迅速下降,下降同时形成RGal-2,反应结束时有少最 RGal-3形成。
六、蔗糖衍生物构效关系的研究蔗糖的甜味与其分子上的羟基密切相关,被氣原子取代后的蔗糖衍生物甜度 大大增强。Wiet& Miller报道,萠糖的氣代衍生物仅仅是增强了蔗糖的固有感官 甜味品质,蔗糖氣代衍生物的甜度-时间特性与蔗糖十分相似。对蔗糖进行其他 化学修饰,如甲基化、乙基化、丙基化、丁基化或苯甲基化,通常生成苦味衍生 物。根据氣取代位S的不同以及甜味分子亲水/亲油的平衡关系,蔗糖衍生物具 有强力甜味、甜味、甜苦味甚至苦味等不同风味品质。
用溴化撖(CNBr)将B链蛋氨酸旁边的肽键切断,释放出八肽(Lys-Lys- Thr-Ile-Tyr-Glu-Asn-Glu),残余蛋白质分子的甜味彻底丧失。Frank等人 用同样的方法从A肽链C -端切断八肽碎链并分离开,但未报道对甜味的影响悄 况。有人通过甲基化法考察莫奈林分子中赖氨酸残基对甜味的影响,发现 20% ~40%的赖氨酸残基甲基化后尚不会引起甜味的完全丧失。但随者甲基化率 的提高,甜度会逐渐卜'降直至最终消失。
图5 - 19 在非选择性培养箪培养50代后各转化体产物的SDS - PAGE图 注:箭头所指为单链莫奈林分子位
二、甜菊苷的物化性质和甜味特性
Shallenberger认为糖分子与甜受体AH、B系统的几何形状决定了两者间的 复合强度,甜味化合物的构象与构型对味觉刺激起取要作用。那些含有芳香残基 的刚性分子结构,如糖精和氨基硝基苯,如果它们的A—B轨道间距合适的话, 在这方面具有明敁的优势。因此,Shallenberger理论能够解释这些人工合成甜味 剂比蔗糖甜几百倍的事实。糖的甜味感觉只能持续数秒钟,说明其结合力较弱。 如果说甜味分子的立体化学结构对甜受体的配合程度决定其甜度大小的话,那么 甜味分子与甜受体相互作用的速率或许要比复合结构本身的持续性更为关键。
表3-6 彩响氯化因素的水平选择
当2,4,6-三溴苯甲酰胺的C-3位被羧烷 C1 NHz 基或竣烷氧基取代后,所生成的化合物具有很高图6-29 3- (4-氣氨茴基)
不同的有机溶剂,也会影响合成速率和平衡得韦。押论和实验都表明,乙酸 乙酯是最好的溶剂(表2 -7)。根据上述结论,我们分别用活塞流式反应器 (plug flow type, PFR)和连续搅拌釜式反应器(CSTR)进行试验,用固定在 Amberlite XAD-7的嗜热菌蛋白酶进行连续催化反应。首先将80mmol/L Z - Asp ^ 200mmol/L PheOMe溶解于饱和乙酸乙酯溶液,然后以外=1.5/h连续加人 PFR中,体系温度保持在40T。初始阶段反应得率>95%,反应进行80h后, 下降到30%左右(图2-26)。固定化酶发生了钝化,其主要原因是:在PFR 中,底物浓度在人口处最大,顺宥出口方向逐渐减小,人口处高浓度的Z-AsP 使嗜热菌蛋白酶的主要稳定因子Ca2<被螯合脱去,而且人口处固定化酶内部的 pH最低,使更容易被脱去。在底物中加入5mmol/LCa[ Z - Asp =80m?K)l/L, ct = 15。 三氣蔗糖的甜度是蔗糖的400?800倍,其甜味纯正,不带任何不愉快的苦 后味或金属后味。

展开阅读全文
本站部分文章来自网络,不代表立场及观点,转载请注明出处,如有侵权请联系即删除。 广告合作事宜,请联系:133 2802 0789(微信同号)

你也可能喜欢

评论已经被关闭。

插入图片
微信 微信
微信
电话 电话
13328020789
返回顶部