定陶区结晶果糖

微信扫一扫,分享到朋友圈

定陶区结晶果糖

定陶区结晶果糖
图2-90纽甜及其类似物的分子结构.
2.计算机模拟识别
FDA仍坚持最初所作出的批准决定,但在有可靠的科学证据证实两者之间 确存在问题时,FDA保留采取行动的权利。这种情况,对于任何需经由FDA批 准的产品均是如此。
系数表明,斥电子取代基会带来分子甜度的增加。这类取代基能增加酰胺氮原子 的氢键作用力,故可带来分子甜度的增加。前述的Fujino化合物具有很高的甜 度,这也可用方程式(2-32)来解释。在该类化合物中,两个酯基团的存在使 得o■?值增大,而2, 6-二甲基环己基和葑基酯上的甲基分支使得(%)2值增 大,W此增大了分子的甜度。
六、蔗糖衍生物构效关系的研究蔗糖的甜味与其分子上的羟基密切相关,被氣原子取代后的蔗糖衍生物甜度 大大增强。Wiet& Miller报道,萠糖的氣代衍生物仅仅是增强了蔗糖的固有感官 甜味品质,蔗糖氣代衍生物的甜度-时间特性与蔗糖十分相似。对蔗糖进行其他 化学修饰,如甲基化、乙基化、丙基化、丁基化或苯甲基化,通常生成苦味衍生 物。根据氣取代位S的不同以及甜味分子亲水/亲油的平衡关系,蔗糖衍生物具 有强力甜味、甜味、甜苦味甚至苦味等不同风味品质。
S-6-a的形成是双酶-化学联合法制备三氣蔗糖的关键步骤,其中G -6 - a 的形成笫要B大芽孢杆菌(B. megaterium)对葡萄糖的发酵作用,而G-6-a的转 果糖基作用则需要在特殊酶的参与下才能顺利完成。巨大芽孢杆菌首先将葡萄糖发 酵成为G -6 -a,随后在果糖转移酶的作用下G -6 -a接受从蔴糖分子中转移来的 果糖基,而专一地形成高得率的S-6-a,其反应过程如图3-33所示。
八1^0—在朽8(^1?提出的甜二肽分子基础上,扩展了 Kaneko的氨基酸立体 化学模塑(图2-74中的IV)。在这个模型中,NH/和C0/基团连接于甜受体 上,侧链R对甜度影响很大。例如,甘氨酸(R = H)和D-丙氨酸[24] (R = CH3)只有较弱的甜味,而D-色氨酸[25] (X = H)和6-氣-D-色氨酸 [25] (X = C1)的甜度分别是蔗糖的35和1300倍。甜度的增加是由于K基团 与受体之间存在着疏水链和色散力的缘故。对于甜二肽V來说,分子下半部第 二个氨基酸占据了 IV中氨基侧链R的位罝。这样,AH-B基团仍是NH/和 C00 ,虽然其间隔要远一些,但仍在Shallenberger和Acree定义的0.25 ~ 0. 40nm范围内。IV中氨基酸手性中心基团的定位与二肽V和VI中天冬氨酸手 性中心的一样,只不过前者是D-型而后者是L-型而已。事实上V和VI中的 竣基团是侧链的一部分(VI中是R基团),这反映了立体化学分配上的变化 情况。
概括地说,甜蜜素具有以下这些特点:
同源建模及对接研究有力地证明了,受体上有两个结合小甜味分子的活性位 点和一个结合甜味蛋白的活性位点。由于甜味化合物的复杂性和多样性,很自然 地,人们会怀疑是否有另外的结合部位存在。确实,在最近的几年里,许多分子 生物学实验,都有助于解释甜味受体和不同配体的相互作用,并为多结合位点的 观点提供有力证据。到目前为止,发现的可能的另外部位主要有两种:一种焙结 合甜赉素和丨actisole (—种甜味抑制剂)的部位,另外一种是结合其他甜味蛋白 的部位。

展开阅读全文
本站部分文章来自网络,不代表立场及观点,转载请注明出处,如有侵权请联系即删除。 广告合作事宜,请联系:133 2802 0789(微信同号)

你也可能喜欢

评论已经被关闭。

插入图片
微信 微信
微信
电话 电话
13328020789
返回顶部