浮梁县果糖

微信扫一扫,分享到朋友圈

浮梁县果糖

浮梁县果糖
(-)柚苷二氢查耳酮(I)的生产技术
N-3,3-二甲基丁基(DMB)取代型二 肽甜味剂,如纽甜[图2-90 (1)]及其《-甲 基苯基丙氨酸类似物[图2-90 (2)],前者甜 味为蔗糖7000倍,后者略低。经X-射线和 NMR分析及分子模型测定,它们在水溶液中的 每一种构象均呈现出L-型或延展型,并且,除 了反向L-型以外,其他的DMB基团正好处于 前面所说D冈域。在另一种纽甜类似物[图
Brazzein在植物甜蛋白中分子质虽最小,分子质萤约为6473u, p/为5。它 具有良好的水溶性,在水中的溶解度在50mg/mL以上,甜度是等质虽蔗糖的 2000倍。其结构相对简单并具有良好的热稳定性和PH稳定性,在较宽的1^和 温度范围内保持稳定,在80T保持4h甜度没有减弱,在85弋仍保持折叠形式, 在髙pH的溶液中仍保持甜味活性。它良好的热稳定性也许应归因于分子内的4 个二硫键。由于这些特性使其在食品添加剂中具有巨大的应用潜力,并成为研究 甜味蛋白分子结构、生化特性及甜味机制的理想蛋白模型。
关于A环的反应情况尚不清楚,一般认为它可能被氧化成二氧化碳。用 [,4C]标记的二氢查耳酮试验表明除了上面提到的几种酸物质外,大鼠还能代谢 产生其他几种至今仍未被人辨认出的尿代谢物。薄层色谱分析表明,大鼠对用 [,4C]标记的新橙皮苷或经标记的二氢查耳酮的具有放射活性的代谢产物很 相似。
二肽甜味剂对N-端氨基有严格的要求,首先它必须是两性离子,而且必须 与带电基团保持一固定距离,因为只有这样的二肽分子才符合Shailenberger和 Acree提出的AH-B甜味理论模型。1972年,Kiei?在著名的Shailenberger甜味 AH/B模型上引人X基团,提出三点结合生甜理论(AH-B-X),该理论沿用 AH+为能提供氢离子以形成氢键的基团(区域),B-是能为构成氢键提供所需 氧负离子的基团(区域),此外,引人的X是通过亲水或疏水特性与上述两块区 域相交,并在甜味感知中起到强化作用甚至决定性作用的基团(区域)。
在多数情况下,上述的开环反应均可定量进行,因此,从黄烷酮到査耳酮冉 到二氢查邛酮的得率一般都比较高。如表4-17所示,用来生产甜味剂I、n和in (结构式见图4-27)的黄烷酮来源于柑橘,它们往往是柑橘皮的主要成分。有两 种黄烷酮(IV和V)为包含有芦-新橙皮苷(2-0-a-LP比喃鼠李糖基-卢-D- 吡喃葡萄糖)的糖苷,还有-种黄烷酮(VI)包含芸畚二糖(6-0-a-L-Ptt: 喃鼠李糖基-沒-D-吡喃葡萄糖)(结构式见图4-28)。如果酚类或黄酮类糖背的糖 基是卢-新橙皮糖或/3-D-葡萄糖的话,则它们为有味物质(苦味、甜味或苦甜
第二节纽 甜
不同来源的半乳糖苷酶催化得到的转糖苷产物见表4 -23。其中K. laclis 的芦-半乳糖苷酶不对RU进行转半乳糖苷反应。环状芽孢杆菌的-半乳糖苷 酶在反应初始阶段优先将半乳糖基转移至RU的19 -羧基相连的葡糖基上,得到 以芦-1,4糖苷键连接的RGal - la,然后得到RGal - lb。RGal - la是CGTase 转糖苷的良好受体,因为其19-羧基相连的葡糖基上的C4-0H已用半乳糖基 保护。而大肠杆菌的卢-半乳糖苷酶主要将半乳糖基转移至19-羧基相连的葡糖 基上,得到以尽-丨,6糖苷键相连的RGal-2,该产物不适于用作CGTase催化 转糖苷反应的糖基受体,因糖基会优先与13-0H相连的葡糖基连接。米曲裤 {As. oryzae)和P. 的芦-半乳糖苷酶催化得到RGa丨-1、RGal - 2、
(四)辅助因素对产率的影响研究表明,在低熔点混合物中加入适宙:的有机溶剂能降低混合物的熔点,从 而提商酶反应的效率。图2-66所示为加入不同溶剂对反应产率的影响。其中, 加入二甲基亚砜(DMSO)和2-甲氧基乙酸乙酯(MEA>能使产率达到60%, 而辛醉和正己烷的加人使产率低于50%。这可能是因为疏水性的有机溶剂能够 改进和保持低熔点混合物的特性,从而能够促进酶反应的产率。图2 -66 不同辅助有机溶剂对反应产率的影响 注:有机溶剂都按丨5% (w/w)的比例加人,苄氧羰基-L-天冬氨酸二乙《和D-内氨酰胺分 别加人0.5mmOl,

展开阅读全文
本站部分文章来自网络,不代表立场及观点,转载请注明出处,如有侵权请联系即删除。 广告合作事宜,请联系:133 2802 0789(微信同号)

你也可能喜欢

评论已经被关闭。

插入图片
微信 微信
微信
电话 电话
13328020789
返回顶部