临朐县低聚果糖

微信扫一扫,分享到朋友圈

临朐县低聚果糖

临朐县低聚果糖
甜味与苦味之间存在着密切的联系,这两种味觉都取决于生味底物分子的总 体立体化学。相对来说,把具有甜味的糖转变成具有苦味的衍生物还是比较容易 的。在吡喃葡萄糖苷结构中,可以发现1、2、6位罝上和环上的氧原子都含有苦 味响应值。这个结果既明显而又令人满意。对这些分子中央,特别是异头碳原子 或更精确地说是那些不包含甜味原子的观察表明,糖分子的尾端具有产生各种味 的功能。这使人们联想到甜味与苦味受体之间存在着空间立体上的联系。
1.生甜闭的分子识别早期对三氯蔗糖高甜度的解释,曾涉及厂-Cl作为生甜团AHS (下标S是 指甜味分子,下同),Bs、Xs三角形生甜团的质子接受部位,即充当化基团的角 色。这种假设可以解释(:11(:!3的甜味,其中一个氣和另一个氣分别作为1和乂5, 而缺电子的H作为AHS。但由于CHC13不是很甜,C1取代基的质子接受能力因 此被认为很弱(相对于0取代基而言)。实际上,红外光谱研究证实了 C1原子 的质子接受能力只有0原子的6% ~22%。这样,在0H和C1同时存在于分子中 时(如三氣蔗糖及其衍生物),C1取代基几乎不参与与甜味蛋白受体形成氢键。 因此,F氣蔗糖及其衍生物的AH、B部位只能是母体上的ft由羟基。
表2 -70 各种构象布居数的计算值和实验值
大约与此同时,意大利的研究者描述了对阿斯巴甜蛋氨酸二肽化合物构象优 先性的研究结果,认为丨^口^是其优先存在的构象。Lelj等人依据阿斯巴甜的 FiDn构象优先性,提出一个具有普遍意义的甜受体结合模型,这其中有改进的 地方是将AH-B部分翻转了 180%这个模型能合理解释阿斯巴甜的D,D和L, D非对映体为何具有苦味。在任何情况下,每一种甜味化合物都能从Shallenberger 阻碍层的对面去接近甜受体,假定这个阻碍层是完全打开的。
改进AH、B、X甜味理论的几种假说由于众多含有AH、B体系的化合物没有甜味,而认定甜味的AH、B理论还 有其他附加条件,且X疏水部位的引入也不足以解释所有的甜味现象,因此 AH、B、X三角理论体系还有待进一步完善。
Yutaka Masuda等对奇异果素的cDNA序列进行克隆并测序。测序发现奇异 果素前体由220个氨基酸组成,其中前29个氨基酸构成了一个信号序列。由奇 异果素的d)NA序列推导出的氨基酸序列与纯奇异果素直接测定的氨基酸序列间 有一个氨基酸不同。从cDNA序列分析得到的129位氨基酸为Trp,而经Edmaii 自动降解法测定为Ser。Northern印迹分析显示在RichtMla dulcifka授粉3周后, 编码奇异果素的mKNA就在果实中表达了,并只出现在果肉中。另有报道采用 免疫学方法即用奇异果素抗体检测奇异果素,在授粉8周后才观测到奇异果素。 这两个结果的差别可能是因为奇异果素蛋白质合成时间和奇异果素的mRNA表 达时间不同或是因为奇异果素基因的表达结果的翻译后修饰受到严格的调控。
1967年,IC Clauss和H. Jensen在进行乙炔与氟磺异铽酸盐的反应时,意外 地发现了一种环状结构的化合物一~5,6 - 二甲基-1,2,3 -氧硫氮杂 环-4 (3H) -2,2-二氧化物带有爽快的甜味。随后的深入研究发现,这类化 合物中带有甜味的甚多,其环上5、6位置h的各种不同取代基团对甜度和甜味 质量有明显的影响。所有的二氢氧硫氮杂环二氧化物,即使环上没有任何取代基 团,也带有不同程度的甜味,其中带短链烷基的化合物甜度最大。对各种不同的 二氢氧硫杂环二氧化物的味觉评价认为,环上不同的取代基闭不仅仅对其甜度而 且对其甜味的纯正性均有明显的影响(见图6-19)。
三氣蔗糖在水溶液中有2种可能的降解途径。在低pH条件下,三氣蔗糖会缓 慢地水解成其组成单糖的衍生物,水解速度随和温度而定。在高pH条件下, 它会在碱催化下从1和6’位置上消去氣化氢分子而形成3',6^-酐。图3-5所示 为这二种可能的分解途径。当然在食品配料系统中,只可能出现酸催化分解现象。

展开阅读全文
本站部分文章来自网络,不代表立场及观点,转载请注明出处,如有侵权请联系即删除。 广告合作事宜,请联系:133 2802 0789(微信同号)

你也可能喜欢

评论已经被关闭。

插入图片
微信 微信
微信
电话 电话
13328020789
返回顶部