上高县结晶果糖

微信扫一扫,分享到朋友圈

上高县结晶果糖

上高县结晶果糖
三、奇异果素的作用机理
②分子能够同时缚住两种受体.并激发之产生两种味。
(二)氢化还原法制备纽甜纽甜的化学合成主要是通过APM与3, 3 - 二甲基丁醛经催化加氢还原 W-烷基化反应制得,其反应原理如图2-48所示。ffl2-48 阿斯巴甜与3, 3-二甲基丁醛反应制备纽甜
草亭酸。用髙效液相色谱可检测出血浆中甘草甜素和甘草亭酸的含最。用 12.5mg/0.5mL的剂量注射内鼠的静脉,不久血浆中甘草甜素的浓度迅速下降,在 最初的60min内下降速度很快,接者是缓慢的下_,再过120min后浓度稳定在 左右。当注射剂量为5mg/0.5mL时,最初60min内甘草甜素浓度急剧下 降,90min后几乎检测不到甘草甜素c对以口服方式进入机体内的甘草甜素及甘草 亭酸在血浆中的存在情况也做了分析。经口摄取后,30min内血浆中甘草亭酸浓度 达到最高值,240min后浓度开始下降。甘草甜素浓度的增加速度中等,在最初 240min内甘草亭酸的浓度大于甘草甜素,240min后它们在血浆中的浓度趋于相等。 甘草甜素的分子质萤较大,在肠道内先被转化为甘草亭酸后才被小肠吸收。
要增加蔗糖的甜度就必须提高分子的亲油性,特别是在轴向4-C及r-c 位上,而2-C和3'-C滞保持羟基游离的状态,因为它们是甜味三角形理论中 的AH和B单元。如按单基团取代比较,蔗糖分子中各羟基的相对活性可大体排 列为:6,>6>4>r>2>3, 3\ 4'但这仅是个原则,羟基被活化而形成活化 级络合过程中还会受到空间阻碍作用,有些羟基在与较大基团作用时会因空间排 列阻碍而受抑制,从而失去应有的活性。例如,4位仲羟基虽比1,伯羟基活泼, 但在酯化反应中各羟基反应的活泼次序是.6-OH,6,-OH>r-OH>2-OHt 且在与像三苯基氣甲烷这样大的取代基团反应时,却是r位的伯羟基优先活化。 通过对氣代产物分离和鉴定,可知蔗糖分子立体选择性反应的反应活性顺序是: 6, - OH >6 - OH >4 - OH > 1, - OH >4, - OH。1, - OH 的氣化速度之所以缓慢, 是因为它是受阻的新戊基型的初级羟基,且毗连于a-异头物基团上。
氨基酸具有AH-B生甜团,为潜在的甜味物质。除AH-B之外还含有亲 水或疏水基团,属于多官能团的有机化合物。一般情况下,带有额外羧基和酰 胺基的氨基酸化合物以酸味为主,残基不超过两个碳原子的亲水氨基酸以甜味 为主,亚胺氨基酸甜苦味均有,残基超过两个碳原子的疏水氨基酸以苦味为 主,带有额外碱基的氨基酸苦中带甜。单个氨基酸中以甘氨酸的甜度最高,达 到蔗糖的90%。W其能蛩值与蔗糖相当,甜度较低而成本又较高,故一般不 作为甜味剂使用。有意思的是,几乎所有的疏水性D-氨基酸均以甜味为主。 由氨基酸缩合而成的肽类有些也有甜味,阿斯巴甜就是其中最早引人注目的 一■种。
表2 -S3 L-天冬氨酜-甘氨酸藤的结构与甜度
图2-61 阿力甜的主要分解途径
由实验数据得知,在奇异果素二聚体中,His29比His59更外露于分子外。 这一结果暗示,HiCQ有可能在奇异果素的味道修饰作用中扮演主要角色。因 此,他们研究了组氨酸残基周围的带电区域,这些K域有可能适合于与甜味受 体结合并产生味道修饰作用。尤其值得注意的是,许多带电残基(Arg27、 Asp28、Arg54、Glu56、Asp 166 N Argl71、Argl72、Aspl77、Lysl78 和 Glu 183)都在His29附近。这些观察结果将为证明T1R2 -T1 R3受体的带负电 荷空穴和蛋白的正电荷K域之间的静电相互作用提供了一个很好的依据。对 His59做类似的分析时,他们也发现了一个比较小的带电K域(Arg54、Lys55、 Glu56、Asp58、Asp60、Arg61和LyS186)在奇异果素二聚体中,撕基位于蛋 白的边缘,属于外餌区域,糖基与蛋白质主体之间也没有形成重要的相互作 用。与另外一种糖蛋白——Neoculin相似的是,奇异果素的糖基部分并不参与 味道修饰作用。

展开阅读全文
本站部分文章来自网络,不代表立场及观点,转载请注明出处,如有侵权请联系即删除。 广告合作事宜,请联系:133 2802 0789(微信同号)

你也可能喜欢

评论已经被关闭。

插入图片
微信 微信
微信
电话 电话
13328020789
返回顶部