柳城县甜菊糖苷

微信扫一扫,分享到朋友圈

柳城县甜菊糖苷

柳城县甜菊糖苷
图1 -29代谢塑受体质体活性位点与配体的结合方式Temussi等人所描述的模型阐明了甜味受体的两个原体的作用。由于T1R3 是甜味受体和鲜味受体所共有的,因此,人们很自然地就会把特异性的来源接至 活化的主要作用分别归结于两个受体的T1R2原体和T1R1原体。蛋白质的楔形 假设已经表明,T1R3在蛋白质与受体外部结合部位结合中起主要作用。随后, Morini等制作的详尽的逑模证明了两个原体在甜味受体的活性状态下均可容纳非 蛋白质配体,并且这一观点还得到了实验结果的支持。
人们通过合成呋喃果糖环上带有4 -氣取代基的蔗糖衍生物來进行甜味评 价。1983年,Githrie等人最先提出由蔗糖与三苯基膦-二乙醉偶氮二羧酸化合 物的新反应可制得3', 4'-来苏糖基-环氧化物,这已应用在4,1\ 6,-三 氣-4,r, 6^-三脱氧-半乳糖基-蔗糖的合成上。来苏糖基-环氧化物在 C-4位上能专一地打开,使得氣阴离子亲核基团接上,再复原成果糖构型,专 一生成了所需的4,r, 4\ 6,-四氣化物(图3-49),它比蔴糖甜2200倍。同 样,用氣转代V-羟基,可进一步使Sucmlose的甜度增大4倍。很明显,所有 的氣取代基均在分子的上方,因为相应在C-3\ C-4'位上构象相反的山梨糖 -四氣化物其甜度只有蔗糖的200倍。这种山梨糖-四氣化物的合成是在3,,4f -核糖-环氧化物的C -4'位上专一地接上氣阴离子(图3 -49〉。
Brazzein具有高度的热稳定性,目前所获得的NMR结构淸楚显示了这一分 子特性的结构基础。Bra^dn具有4对二硫键,Kohmimi M等以嗜热菌蛋白酶酶 解法结合质谱法测定Brazzein的4个二硫键分别位于蛋白分子内Cy?4 -Cys52、 Cysl6 - Cy?37、Cys22 - Cys47、Cys26 - Cyre49 区域,其交联作用使 Brazzein 整个 分子紧密折狰,如图5-22所示。二硫键Cys22 - Cys47和Cys26 - Cys49将a螺 旋固定于芦折香的链11 (strand D )(残基44?50), 二硫键Cysl6 - Cys37将 310锞旋固定于折盎的链HI (strand ID)(残基34~39),分子的N端和C端也 通过二硫键Cys4-Cys52相交联^正是通过这种二硫键的交联作用,使Brazzein 整个分子紧密折魯成一牢固的空间结构,从而产生优异的耐热性能o
AH、B、X甜味三角理论,是目前用来解释甜味分子构效关系最为有效的理论体 系。以该理论为指导并结合计算机模拟技术,对甜味分子的AH、B、X生甜团进行 分子识别,可以在分子水平上成功解释三氣蔗糖等作为强力甜味剂的结构本质。
蔗糖的能量值为16.7kJ/g,阿斯巴甜为16.7kJ/g,纽甜<1.2kJ/g,根据这 些数值可以很容易地计算出,含100g/L蔗糖的饮料能虽为1700kJ/g,含 525mg/L阿斯巴甜的饮料为8.92kJ/g,含17mg/L纽甜的饮料则小于0. 02kJ/g。 也就是说,用阿斯巴甜的饮料所含能量比用蔗糖的低0.52% ,而用纽甜的饮料 所含能S比用阿斯巴甜的至少低0.22%,比用蔗糖的至少低0.001%。从实际效 果看,可认为纽甜是无能量的甜味剂。 NHS0,H ? MQH,), NH—SOj 活力,包括手性分子之间巨大的甜度差异。 在图 2-25 (2) _出了在 Z-AsP80mmoi/L、PheOMe 为 0% 及 90% 转化率 时,水相pH与PheOMe浓度的关系,由图可知最优PheOMe浓度应大于或等于 200mmol/Lo由前面讨论可知起始反应速率基本上与PheOMe浓度成比例,因此 PheOMe过景可以提高合成速率。尽管上述分析尚不严密,但这样处理有利于优 化合成Z - Asp - PheOMe等肽的反应,理论上适用于批反应系统。 y-(% ) = 2(ZA]:^7^) lA - ^ [ZA]_ [PM『丨(2 -叫 4 = a([ZA]: + [PM]i) (2-29)

展开阅读全文
本站部分文章来自网络,不代表立场及观点,转载请注明出处,如有侵权请联系即删除。 广告合作事宜,请联系:133 2802 0789(微信同号)

你也可能喜欢

评论已经被关闭。

插入图片
微信 微信
微信
电话 电话
13328020789
返回顶部