华龙区果糖

微信扫一扫,分享到朋友圈

华龙区果糖

华龙区果糖

甜菊苷与乳酸、淀粉或葡萄糖混合可降低甜菊苷产品的吸湿性。据说往浓缩 蔗糖或葡萄糖溶液中添加甜菊苷可加速其结晶过程。有些填充剂除了可作风味掩 盖剂或控制甜菊苷的湿润性外,还可使其用于工业化操作,这类物质有淀粉和蔗
Hemamhildn没有诱变活性,大鼠喂养试验表明没有急性毒性。然而 遗憾的是,这种髙效甜味剂带有明M的苦后味,制约了它的应用范围。
在双酶-化学联合法合成三氣蔗糖中,最值得关注的是优化G- 6 - a的发 酵条件以及改善糖和糖酯的分离技术,这将有助于提高该法的效率,因此,需要 对G-6 - a形成过程中的生物化学和生理学机制进行详细的研究以简化该操作。 而快速分析、良好的反应控制以及适时地终止反应,也是双酶-化学联合法合成 三氣庶糖所必需的。同时,以蔗糖为原料经微生物发酵作用,直接生成S-6-a 的方法相当诱人,在这方面值得花大力气加以研究。
Jennings和Jones发现减少氣化磺酰反应中吡啶的用量可避免环状硫酸盐的 产生而产生氣硫酸酯。后者在后处理中可用甲醇碘化钠溶液去除,并释放出游离 的羟基。在这些条件下,可用甲基a-D-吡喃葡萄糖苷制得甲基-4,6-二 氣-4, 6-二脱氧-a吡喃半乳糖苷的2, 3-氣硫酸盐(图3-41)。在低 温条件下进行这个反应时,发现它是通过2, 3, 6-四氣硫酸盐这个中间产物, 经氣阴离子的亲核双分子取代,先是在C-6位上进行,得到6-氣化物,然后 在C-4位上缓慢取代并经构型颠倒,最后产生4,6-二氣-半乳糖苷-2,3- 氣化硫酸盐(图3-41)。图3-41氣化磺酰和甲基-?-D-吡喃葡萄糖苷的反应围3 -42通过在吡啶中与S02C12反应来改性蔗糖分子中的呋喃來糖苻琅元通过严格控制庶糖与氣化硝酸的多中心反应(multi - cenlred reactions), 可产生氣化程度从1?5的衍生物。主要反应途径起始于半乳糖基-蔗糖的 6'-单氣衍生物(29%的得率),接下产生6,6^-二氣衍生物(29%得 率),之间是4, 6,6、三氣衍生物(50%得率)以及4,6,6^四氣衍生 物(45%得率)和4,6, r, 4\ 6'-五氣衍生物(图3 -43)。4f -氣代 硫酸盐的直接取代似乎是由于空间因素而被阻止。而f-氣取代基的引人是 通过3,4'-环氧化物实现的。通过对氣代产物的分离和鉴定,得知立体选 择性反应的反应活性顺序是:H0 - 6' > H0 - 6 > H0 -4 > H0 -厂> H0 - 4'。 ho-r的氣化速度之所以缓慢,是因为它是受阻的新戊基翌的初级羟基, 且毗连于《-异头物基团上。在四氣化碳和吡啶溶液中,使蔗糖与三苯磷发 生选择性反应能更容易地制得6,6^-二氣化物(得率>70%)r 4,6,1、 6^-四氣一4,6,\\ 6#-四脱氡-半乳糖基-蔗糖最好是用氣化锂取代蔗 糖,经过6,1', 6'-三苯基磺酸盐得到6, 6-氣化物,再与氣化磺酰 在C-4位上进行选择性反应而制得的(图3 -44)。1975年的分析认为, 这种化合物比固体蔗糖甜200倍,这是人们第一次制得的增甜的天然碳水化 合物衍生物。这种衍生物不但具有很好的口味感和甜味特性,而且不参与人 体代谢,因此是一种潜在的无能量强力甜味剂。从结构与甜味的关系来肴, 最初研制的一?种海藻糖衍生物~4,6,4\ 6、四氣-4,6,4\ 6、四 脱氧-半乳糖基-海藻糖(图3-45),不但没有甜味,反而与奎宁一样苦, 这种情况令人惊奇。
(四)酵母嗦吗甜的分析
如前所述,纽甜的平均和90%的每日消耗量是用纽甜来取代所有产品中的 阿斯巴甜来预测的,在美国这些预测值分别是0.04和0. lmg/(kg*d),这是个 非常保守的假定。然而,在实际上用纽甜来取代所有的阿斯巴甜是不太可能的, 而许多的其他甜味剂的使用会更进一步降低纽甜的用量。因此,预测的纽甜消耗 量远低于美国FDA所制定的可接受的每日摄人量,纽甜的实际消耗量也将会少 于市场前期的估计。
在第二种机理中,糖分子首先与细胞黏膜的非专一性部位发生可逆性结合, 引起代表持久性的刺激物浓度的集中。当糖分子从非专一性部位脱落后可到达由 之刺激而打开的离子载体那儿去,这过程导致刺激物分子的释放,且关闭的离子 通道可被另一糖分子重新打开。因此,反应强度可解释为结合位的快速占有与让 出,以及与之同时发生的离子通道的快速打开与闭合。

展开阅读全文
本站部分文章来自网络,不代表立场及观点,转载请注明出处,如有侵权请联系即删除。 广告合作事宜,请联系:133 2802 0789(微信同号)

你也可能喜欢

评论已经被关闭。

插入图片
微信 微信
微信
电话 电话
13328020789
返回顶部