淄博三氯蔗糖

微信扫一扫,分享到朋友圈

淄博三氯蔗糖

淄博三氯蔗糖
图2-70阿斯巴甜的结构及其生甜团m 2-71 二肽甜味剂与甜受体的相互作用
控制下表达得到苯丙氨酸和天冬氨酸的聚合体。该聚合体可以用不同蛋白酶, 如可溶性或固定化胰凝乳蛋白酶、水溶性或固定化枯草杆菌蛋A酶Carlsberg、 可溶性蛋A酶K和可溶性蛋内酶嗜热菌蛋白酶水解得到多肽,但这些酶都不 能专一水解得到Asp-Phe。可溶性枯草杆菌蛋甶酶Carlsberg或蛋白酶K的催 化专?性不强,得到的水解产物为ASp-Phe、Phe-Asp和其他由这些二肽聚 合的低聚物;用固定化枯草杆菌蛋白酶催化得到的结果最好,水解产物中绝大 部分为Asp - Phe。
1.对AH、B基团的扩展最早Shallenberger对甜味基本单元AH、B的定义是:A和B是空间相距 0.25~0.40nm带相反电荷的两个原子,其中A含有一个带正电的质子,B为质 子受体。但在诸如三乙酸或三硝酸甘油酯等一些甜味分子中,却找不到如此定义 的氢键供体AH,因此主张引申Shallenbergei的AH、B为Lewis酸碱概念中的A 和B:即凡是能接受未共用电子对形成共价键的分子或离子都称为Lewis酸;凡 是能给出未共用电子对的分子或离+都称为Lewis械0
其中,嗜热菌蛋白酶的吸附影响可以忽略不计;因为合成速度比底物和产物 的扩散速度慢,所以界面的物质传递影响也可忽略不计;水相pH变化可由底物 产物分配比及在电中性时的解离平衡常数计算得到。
现在,人们正努力研究以期分离出能引起上述反应的专一微生物。已发现很 多细菌具有分-葡糖犴酸酶的活性,能将甘草甜素水解成甘草亭酸。只有两种细 菌可将3 -脱氧-18 -卢-甘草亭酸还原成甘草亭酸或3 -表-18 -甘草亭酸。 从人的新鲜粪便中分离出的瘤符球歯属(Riimirwcoccus)具有水解甘草甜素生成 18 -P -甘草亭酸的功能,另外可将3 -脱氢-18 -甘草亭酸还原成对映体 3-表-18-0-甘草亭酸的梭状芽孢杆菌(Clostridium)也是从人刚排出的粪便 中分离出来的。这两种细菌的混合体能将甘草亭酸异构成3 -表-18 -办-甘草 亭酸,反过来也如此。这一过程可能是通过氧化中间体3-脱氢-18-/3-甘草 亭酸而进行的。甘草甜素转化成3-表-18-分-甘草亭酸是分几步进行的,其 中的终端异构物(isomer)是几种细菌的?种产物。所有变化可概括成:甘草甜
简单的疏水D-氨基酸和合成二肽(如阿斯巴甜)就可以激活甜味受体。 所有这些分子,如谷氨酸,都有一个相同的氨基酸结构成分——这一结构成分由 羧基及其相邻的氨基组成u Morini等猜测,受体T1R2-T1R3的活性位点应保留 了所有这些必要特征,否则就不能与这一结构成分结合了。换句话说,在由 mGluRl推测T1R2-T1R3的结构时,位于mGluRl空穴壁上的那些结合由竣基 及其相邻的氨基组成的结构成分的极性残基应当高度保留。事实也证明, mGluRl中那些直接和由竣基及其相邻的氨基组成的结构成分发生相互作用的残 基确实完好地保留了下来。相反,研究人员估计,空穴其他部分的残基,即 mGluRl中那些结合谷氨酸侧链的残基,可能在T1R2-T1R3中由极性转为非极 性。Morini等通过对四个模型的研究,发现结合谷氨酸的由羧基及其相邻的氨基 组成的结构成分的残基在所有原体中都完好保留,而mGluRl中联结谷氨酸盐侧 链的残基则变成极性更弱或不带电的残基。
(一)人体对甜蜜素的吸收与代谢
2 -2 阿斯巴甜2种主要的分解途径 (1)水解生成天冬氦酰苯丙氡酸(Aap-Phc)和肀醇(McOH) (2)通过坏化作用生成《 (Asp-Phc)和甲醇 阿斯巴甜的主要分解产物图2 -4 在105?C、丨20弋和丨50尤下干燥阿斯巴甜转化成DKP的百分率 ?1 干燥状态下阿斯巴甜的稳定图2-5所示为pH、温度和时间对阿斯巴甜水溶液稳定性的综合影响。25T 时,它在PH4.3左右最为稳定,在pH3~5之间稳定性很好。图2-6和图2-7 所示为在40弋、80T及不同pH环境中该化合物的稳定性情况。在一定时间内, 通过使阿斯巴甜暴銪于高温环境中来观察其稳定性的变化情况。在图2 - 6和图

展开阅读全文
本站部分文章来自网络,不代表立场及观点,转载请注明出处,如有侵权请联系即删除。 广告合作事宜,请联系:133 2802 0789(微信同号)

你也可能喜欢

评论已经被关闭。

插入图片
微信 微信
微信
电话 电话
13328020789
返回顶部