淮上区罗汉果苷

微信扫一扫,分享到朋友圈

淮上区罗汉果苷

淮上区罗汉果苷
2.对疏水基团X的扩展Kier发现高甜度分子必有疏水性的X部位,但他认为X是一个确定位置点 (距A和B分别为0.35mn和0.55mn)的说法却没有普遍意义,实际上X固然 可以是确定接触的点,但更符合是一种多点接触的诱导效应,包括各种不同的键 合力。因此疏水部位X应该是一个完整而易变的整体结构,而不是甜味三角中 的一个明确且特殊的点。
通过增加浓度进行品尝来测定三氯蔗糖的甜味阈值,敏感者的甜味阈值浓度 是0.00014%,较不敏感者为0.00113% ,平均值为0.00038%。而用蔗糖进行同 样品尝的结果表明,其阈值为0.07%和1.13%,平均值为0.31%。由此数值计 筲出三氯蔗糖的甜度,为蔗糖的815倍。
研究甜味理论及其构效关系的目的,不仅在于阐明甜味的呈味机理,更重要 的是指导合成新型的人工甜味剂。近百年来,几种重要人工甜味剂的发现均出自 偶然的机遇,如1879年的糖精(Saccharine)、1883年的甘素(Dulcin)、1893 年的甜素(Gliicin)、1937年的甜蜜素(Cydanmte)和1965年的阿斯巴甜 (Aspartame)都是著名的偶然事件,而通过精心设计而成功发现的人工甜味剂则 几乎没有。
Brazzein通常与其他种类的甜味剂复配来改善饮料的口感。这种方法在柠檬 酸饮料和磷酸盐饮料中均有很好的效果。在适当的比例下,Brazzdn可与大多数 高效甜味剂复配成很好的甜味剂。分别或同时与安赛蜜和阿斯巴甜复配时, Brazzein还能提髙产品的稳定性、风味和口感。Brazzein可明显地消除其他甜味 剂甜味不纯的影响。例如,甜菊苷和Brazzem复配后,其甜味质量要比单独使用 甜菊苷好。
根据甜味三角理论,A和B是空间相距0.25 -0. 40nm的带负电荷的两个原 子,其中A与带正电的质子结合成为AH。AH在整体上可以是酸,B为质子受 体,可认为是碱。一个甜味分子中的AH、B系统可和位于甜味蛋白受体上另一 个合适的AH、B系统进行氢键结合,形成双氢键复合结构。甜味分子和甜味蛋 白受体的复合反应虽然没有生成新的产物,但它却引起一个依靠神经冲动传递的 甜味刺激,两者间的复合强度决定了甜味刺激强度即甜度。
最初的甜蜜素是以薄片形状投放市场的,仅供糖尿病患者使用。后来出现了 甜蜜素与糖精的混合产品,不再仅限于糖尿病人食用,但主要还是用于糖尿病人 的食品。不久之后,粉末状和溶液状的甜蜜素产品相继问世,为扩大它的应用范 围提供了条件。后来。软饮料工业开始使用甜蜜素与糖精的混合物,使它的销售 情况大为改观,在美国的消耗童直线上升,成为一种消费摄很大的人工甜味剂。
1.生甜闭的分子识别早期对三氯蔗糖高甜度的解释,曾涉及厂-Cl作为生甜团AHS (下标S是 指甜味分子,下同),Bs、Xs三角形生甜团的质子接受部位,即充当化基团的角 色。这种假设可以解释(:11(:!3的甜味,其中一个氣和另一个氣分别作为1和乂5, 而缺电子的H作为AHS。但由于CHC13不是很甜,C1取代基的质子接受能力因 此被认为很弱(相对于0取代基而言)。实际上,红外光谱研究证实了 C1原子 的质子接受能力只有0原子的6% ~22%。这样,在0H和C1同时存在于分子中 时(如三氣蔗糖及其衍生物),C1取代基几乎不参与与甜味蛋白受体形成氢键。 因此,F氣蔗糖及其衍生物的AH、B部位只能是母体上的ft由羟基。
转糖苷反应的产物结构

展开阅读全文
本站部分文章来自网络,不代表立场及观点,转载请注明出处,如有侵权请联系即删除。 广告合作事宜,请联系:133 2802 0789(微信同号)

你也可能喜欢

评论已经被关闭。

插入图片
微信 微信
微信
电话 电话
13328020789
返回顶部