恩施州果糖

微信扫一扫,分享到朋友圈

恩施州果糖

恩施州果糖
醇羟基可以被多种氣代试剂氣化,如 盐酸/氣化锌、亚硫酰氣、三氣化磷等。就 反应机理而言,均按Sw亲核取代反应历程 来进行,被取代的3个羟基中,因&和r 位碳原子属于伯碳原子,可0由旋转,不存在构型转化现象,而4位上的手性碳构 型发生Walden翻转,使原来的葡萄糖构型转换为半乳糖构型,如阁3-21所示。
阿斯巴甜分子中的生甜闭尽管AH、B甜味理论能够很好地解释已知的所有甜味化合物的甜味特性, 但这种理论仍然遇到了诸多挑战:①虽然在甜味分子中都可以找到适当的AH、B体系,但许多拥有AH、B 体系的化合物并不甜。②AH、B理论可以解释甜味剂的甜味特性,却不能解释高效甜味剂的高效 甜味特性。1972年Kier在研究1 -烷氧基-2-氨基-4-硝基苯(图丨-7)时,引人 了另一分子特征即疏水(亲油)结合基团X,于是形成了甜味三角形理论 (AH、B、X理论)Q X距离AH的A约0.35nm,距离B约0.55nm。后来Hough 也认为除AH、B系统外,还应有一个亲油性或疏水性的第三连接点,这就承认 了 Kier的甜味三角形理论(图1-8)。Shallenberger本人也修改了他的理论,用 一个三角形概念来描述对映体的甜味(图丨-9)。丨-烷氧基-2-氨基-4-硝 基苯的高甜度可以解释为其1位基团的极化性,这个1位是“第三连接点X”, 它和硝基(B)、邻位的氢(AH)联合产生甜味。在D-氨基酸中,缬氨酸、亮 氨酸、色氨酸和苯丙氨酸都具有比较强的甜味,这是由于它们都含有疏水基的缘 故。因为甜味分子的琉水性基能与甜受体膜的疏水性部位相结合,使甜味分子易于 被甜受体膜所吸附。可以认为,亲油-亲水平衡是决定一种分子甜度的重要因素。
L和M)中相成的单体用相同的顔色表示]
用乙醉分子代替水分子时,会改变嗦吗甜的分子结构而使之丧失甜味。再添 加些水后会发现其甜味慢慢恢复,这是因为有机溶剂分子又重新换成原来的水分 子。这种甜味市新恢复的程度与乙醇浓度及溶液pH有关。例如,0% ~30%乙 醉液对嗦吗甜的甜味没有影响,但若高于30%,嗦吗甜的甜味就会迟延。在 40%乙醉溶液中甜味延迟lmin,在50%乙醇溶液中延迟3fnin,在60%乙醇中延 迟约lOmin。如果含乙醉的溶液呈酸性(pH = 1.7 ~3.0),即使是在低浓度的乙 醇液中,甜味延迟的时间更长。若将嗦吗甜乙醇溶液的pH提髙至3,扩藏前用 水稀释之,发现稀释液甜味恢复的比率明显增大,原来延迟lOmin的缩短至 6min,经30^:藏1周后发现又缩短至2.5min。这表明适宜的酸环境有利于阻 止溶剂对甜分子较好构象的干扰破坏。已知分子的形状及其溶剂的环境对可感觉 的甜味影响很大,因此从这些结果我们可以得知,像嗦吗甜这类大分子甜味剂还 附加一个时间效应。
阿斯巴甜在人体内代谢,以及在高温长时间条件下可能会分解产生极少量的 甲醉。大量事实证明,在一般的摄入最范围内,阿斯巴甜所含有的甲醇不会造成 安全性问题。如图2-32所示,以阿斯巴甜增甜达到与10%庶糖溶液同等甜度 (约含阿斯巴甜525mg/L)的饮料中,仅食有相当于56mg/L的甲醇,这一含最 大大低于普通果汁和蔬菜汁中甲醉的含量。显然,存在于大0然中生长的果汁中 的甲醇含量远远高于最大萤使用阿斯巴甜作为甜味剂的饮料中的含最。因此,美 国FDA作出结论认为:“本局认为没有必要担心由于摄入最大量的阿斯巴甜会导 致膳食中甲醇摄入量的变化。”
(四)双酶-化学联合法(单基团保护法}
几乎所有的二氢奄耳酮都是由相应的査耳酮催化还原而得,而杏耳SR则娃有 黄烷酮在碱作用下发生开环反应而得,图4 -26所示为其反应过程。
快徒性
②是构象确定的味觉改性剂的精神物理 学试验结果。

展开阅读全文
本站部分文章来自网络,不代表立场及观点,转载请注明出处,如有侵权请联系即删除。 广告合作事宜,请联系:133 2802 0789(微信同号)

你也可能喜欢

评论已经被关闭。

插入图片
微信 微信
微信
电话 电话
13328020789
返回顶部