莘县AK糖

微信扫一扫,分享到朋友圈

莘县AK糖

莘县AK糖
QH,,NC0 + H3S04 °~6° ?QH,,NHS0,H + C02 t 反应后可用NaOH碱化,结晶和觅结晶后得产品。此法合成路线短,条件温 和,但原料异氮酸环己酯不易得。美国杜邦公司曾对此做过研究。
时 |、Hj/h
三、纽甜的甜味特性1991年,美国纽特公司通过对强力甜味剂结构-甜度关系的广泛研究而提 出假说,认为人体的甜受体(HSR)可能含有2个完全不同的疏水结合位 (HBP),两者相距丨rnn。当时,普遍认为阿斯巴甜是通过它的苯环与甜受体的一 个疏水结合位之间的疏水反应而作用于甜受体的。根据这种双疏水结合位假说, 他们认为阿斯巴甜的疏水基衍生物有可能作用于假设中的第2个疏水结合位 [图2-42 (1)]。从分子模型的分析中,可以判断使阿斯巴甜作用于假说的第2 个疏水结合位的最好、最简单方法就是在它的氨基上结合以疏水取代基。通过多次 尝试,他们发现了几种斤-烷基或/V-环烷基取代基可以作用于假设中的第2个 HBP (表2-24)。其中最有效的取代基是3, 3-二甲基丁基[图2-42 (2)], 结合这一取代基后的阿斯巴甜,以摩尔数汁与2%蔗糖溶液相比甜度由原来阿斯 巴甜的约170倍,增长到纽甜的约11000倍,以质量计则为由约200倍增长到约 1_倍。甜度的大大增加,证实了在人体甜受体中第2个独立疏水结合位的 存在。
用lOOmmol/L碳酸氢気透析3h 在4~5h内用蒸馏水洗涤5次
糖精的一个最大缺陷就是其水溶液带有明显的苦后味与金属味,致使许多人 对之望而生畏。这可通过添加些其他物质来掩盖,较早使用的是甘素(dulcin), 现在使用的是葡萄糖、阿斯巴甜等。1%9年美国禁用甜蜜素之前,糖精大多与 甜蜜素混合使用,广泛应用于食品、饮料工业。该混合物至今仍在澳大利亚及欧 洲一些国家中继续应用。甜蜜素弓糖精的混合物甜味质萤很好,应用于软饮料时 简直与使用蔗糖无异。后来美国禁用甜蜜素,因此人们使用其他物质替代之,这 些物质包括:阿斯巴甜、安赛密、三氣蔗糖、结晶果糖、乳糖和多元糖醇等。在 西班牙,有一种甜度3倍于蔗糖的UNEA产品(UNEA是西班牙Wasserman Uboralories的注册产品),是由糖精、果糖和甘銪糖醇混合而成的,据说风味很 好,被当作糖来销售。
已有人进行甜叶菊S. rebauduma植物的改性育种研究。日本报道了对该植物 进行细胞组织改性后培育出的植株其双糖A苷含最是原来的2. 56倍。在这种植 株中,双糖A苷的含与甜菊苷相等。总之,甜菊双糖A苷以其更优、更好于 甜菊苷的特性而引起人们浓厚的兴趣,不少人正致力于商业化生产技术的研究。
巨大芽孢杆菌(B.megalerium) NC1B 8508可以将葡萄糖发酵为G - 6 - a。 当巨大芽孢杆菌(B. megaterium) NCIB 8508在由0.4%葡萄糖和Duff & Wehley 盐介质组成的培养基中于30尤摇瓶培养时,即可专一地分泌出G-6-a,而不形 成多乙酰化葡萄糖酯。
甜蛋白的来源及性质
(二)酶反应过程的动力学模型该合成反应中,甜菊苷与蔗糖经FFase催化生成FSte和葡萄糖。该反应双底 物、双产物,并且同时有副反应发生,反应机制相当复杂。Chamber!等认为,蔗 糖和呋喃果聚糖的转果糖基反应,符合乒乓(BiBi)机制。Suzuki等认为,S和蔗 糖的转果糖基反应也符合相同的机制(图4-21),并对该反应建立了动力学模型。 该反应中,游离爾E和蔗糖Sue反应形成第一个复合物E ? Sue。然后G从E ? Sue 释放形成第2个复合物E ? Fru,该复合物与S反应形成第3个复合物E ? FSte,随 后FSte释放。在该系统除转果糖基作用外,还同时进行蔗糖水解和FSte水解反应。 这些水解反应若把水看作第二底物,则也符合乒乓(BiBi)机制,如图4-21 (2) 和(3)所示。根据研究认为FSte的合成不仅受到G的抑制,还受到F的抑制, 因此必须考虑G和F的竞争性抑制作用,并认为酶和副产物的复合物E ? Glu和 E* Fru呈惰性。FSte合成的总反应的理论机制如图4-22所示,A,?屺分别表示一 级反应的速率常数。图4-21各反应的乒乓(BiBi)机制示意图 (1) FSte合成反应 <2>蔗糖水解反哚 (3) FSte水解反应

展开阅读全文
本站部分文章来自网络,不代表立场及观点,转载请注明出处,如有侵权请联系即删除。 广告合作事宜,请联系:133 2802 0789(微信同号)

你也可能喜欢

评论已经被关闭。

插入图片
微信 微信
微信
电话 电话
13328020789
返回顶部